| 研究生: |
黃律維 Huang, Lu-Wei |
|---|---|
| 論文名稱: |
應用無機奈米粒子與有機高分子製備複合太陽能電池 Hybrid Solar Cells Based on Inorganic Nanoparticles and Conjugated Polymer |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 銅銦硫 、銅銦硒 、硫化鋅 、硒化鋅 、奈米粒子 、多元醇法 、複合太陽能電池 |
| 外文關鍵詞: | CuInS, CuInSe, ZnS, ZnSe, nanoparticles, polyol route, Hybrid solar cells |
| 相關次數: | 點閱:87 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是利用多元醇法(polyol route)製備銅銦硫(CuInS, CIS)、銅銦硒(CuInSe,CISe)、硫化鋅(ZnS)及硒化鋅 (ZnSe)等奈米粒子,經過X光粉晶繞射儀(X-Ray Diffraction)等其他分析,確認材料性質,摻入高分子有機半導體化合物中, 作為複合太陽能電池之主動層材料,透過調整製程中的膜厚與溫度,以及不同溶劑與濃度比例等參數,達到最佳化的複合太陽能電池。在製備複合太陽能電池,目前做到到最高效率為0.01%,主要導致光電轉換效率仍不高的原因,是由於在奈米粒子與高分子之間的介面上有相的差異,除了以上參數的調整,本研究還針對奈米粒子的表面做改質以及奈米粉末合成的比例,朝這些方向做改善,希望能進一步達到更高效率的複合太陽能電池。目前除了介面上的問題以外,還有材料在能階上匹配的問題,導致原件效率仍有很大的改善空間。
In this study, polyol route were used to prepare copper indium sulfide (CuInS, CIS), copper indium selenium (CuInSe, CISe), zinc sulfide (ZnS) and zinc selenium (ZnSe) and other nanoparticles. Through the X-ray diffraction and other analysis to confirmed the material properties. Incorporation of polymer organic semiconductor compounds as the active layer of hybrid solar cells. In order to achieve the best performance of the hybrid solar cells, this could be done by the adjustment process in the film thickness and temperature, and various solvents and concentration ratio and other parameters.
In the preparation of hybrid solar cells, the highest efficiency of the present is 0.01%. The main reasons cause low power conversion efficiency is due to polymer and nanoparticles have phase difference between interfaces. In addition to the above parameters can be adjusted. The study also aimed at the surface modification of the nanoparticles, and the ratio of nanoparticles synthesis. Make improvements in these directions, and hopes to further achieve higher efficiency of hybrid solar cells. Except interface issues, the bandgap of material to match also is an issue. Resulting in the efficiency of device is still much room for improvement.
[1] D.M. Chapin, C.S. Fuller, G.L. Pearson, “A new silicon
p-n junction photocell for converting solar radiation
into electrical power”, Journal of Applied Physics,
Vol.25, 676(1954).
[2] Waldo J.E. Beek and René A.J. Janssen “Hybrid Polymer-
Inorganic Photovoltaic Cells” L. Merhari (ed.), Hybrid
Nanocomposites for Nanotechnology, 321-385.
[3] M.A. Green, “Third generation photovoltaics: Ultra-high
conversion efficiency at low cost”, Progress in
Photovoltaics: Research and Applications ,Vol.9,123
(2001).
[4] Y. Chiba, A. Islam, K. Kakutani, R. Komiya, N. Koide,
L. Han, 15th International Photovoltaic Science and
Engineering Conference, Shanghai, 665(2005).
[5] Guangliang Zhang, Hari Bala, Yueming Cheng, Dong Shi,
Xueju Lv, Qingjiang Yu and Peng Wang, “High efficiency
and stable dye-sensitized solar cells with an organic
chromophore featuring a binary p-conjugated spacer”,
Chemistry Communications,2198–2200,( 2009)
[6] Gilles Dennler, Markus C. Scharber, and Christoph J.
Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar
Cells”, Advanced Materials, Vol.21, 1323–1338(2009).
[7] Sung Heum Park, Anshuman Roy, Serge Beaupre, Shinuk
Cho, Nelson Coates1, Ji Sun Moon, Daniel Moses, Mario
Leclerc, Kwanghee Lee* and Alan J. Heeger, “Bulk
heterojunction solar cells with internal quantum
efficiency approaching 100%”, Nature Photonics,
Vol. 3,297-303, MAY(2009)
[8] Bright Walker, Arnold B. Tamayo, Xuan-Dung Dang, Peter
Zalar, Jung Hwa Seo, Andres Garcia, Mananya Tantiwiwat,
and Thuc-Quyen Nguyen, “Efficiency in Solution
Processed, Small-Molecule Bulk Heterojunction Solar
Cells”, Advanced Function. Materials,Vol.19, 3063–3069
(2009)
[9] Ning Li, Brian E. Lassiter, Richard R. Lunt, Guodan
Wei, and Stephen R.Forrest, “Open circuit voltage
enhancement due to reduced dark current in
small molecule photovoltaic cells”, Applied Physics
Letters,Vol.94, 023307 ,(2009)
[10] Serap Gunes , Niyazi Serdar Sariciftci, “Review Hybrid
solar cells”,Inorganica Chimica Acta ,Vol.361,581–588
(2008)
[11] Chin-Yi Liu, Zachary C. Holman, and Uwe R.
Kortshagen, “Hybrid Solar Cells from P3HT andSilicon
Nanocrystals”, Nano Letters., Vol. 9, No. 1,(2009).
[12] R.Farchioni, G.Grosso. Organic Electronic Materials
P.4 (2001)
[13] Bao Z , Dodabalapur A , Lovinger A “Soluble and
processable regioregular poly(3-hexylthiophene) for
thin-film field-effect transistor applications with
high mobility” . Applied Physics Letters, Vol.69,
4108 . (1996)
[14] Babel A , Jenekhe SA,” High electron mobility in
ladder polymer field-effect transistors”, Journal of
American Chemical Society ,Vol.125,13656 (2003) .
[15] E. Arici, D. Meissner, F. Schaffler, N.S.
Sariciftci, “Core/Shell nanomaterials in
photovoltaics”, International Journal of Photoenergy,
Vol. 5,199(2003).
[16] N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F.
Wudl, “Photoinduced electron transfer from a
conducting polymer to buckminsterfullerene”,
Science ,Vol.258, 1474(1992).
[17] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J.
Heeger, “Polymer Photovoltaic Cells: Enhanced
Efficiencies via a Network of Internal Donor-Acceptor
Heterojunctions”, Science,Vol. 270, 1789(1995).
[18] V.S. Gurin, Colloids Surf., “Nanoparticles of ternary
semiconductors in colloids Low-temperature formation
and quantum size effects”, Colloids and Surfaces A:
Physicochemical and Engineering Aspects, Vol.142/1, 35
(1998).
[19] H. Zhong, Y. Li, M. Ye, Z. Zhu, Y. Zhou, C. Yang, Y.
Li, “A facile route to synthesize chalcopyrite CuInSe2
nanocrystals in non-coordinating solvent”,
Nanotechnology ,Vol.18/2, 025602(2007).
[20] T. Wada, H. Kinoshita,” Preparation of CuIn(S,Se)2 by
mechanochemical process”, Thin Solid Films, Vol.92,
480–481 (2005).
[21] B. Li, Y. Xie, J. Huang, Y. Qian, “Synthesis by a
Solvothermal Route and Characterization of CuInSe2
Nanowhiskers and Nanoparticles”, Advanced Materials,
Vol.11/17,1456(1999).
[22] H. Grisaru, O. Palchik, A. Gedanken, V. Palchik, M.A.
Slifkin, A.M. Weiss, “Preparation of Cd1-xZnxSe Using
Microwave-Assisted Polyol Synthesis”, Inorganic
Chemistry. Vol.42/22 , 7148 (2003).
[23] Yu wen Zhao, Yong Zhang, Hao Zhu, George C.
Hadjipanayis, and John Q. Xiao, “Low-Temperature
Synthesis of Hexagonal (Wurtzite)ZnS Nanocrystals”,
Journal of American Chemical Society, Vol.126, 6874
-6875(2004)
[24] Guozhen Shen, Di Chen, Kaibin Tang, and Yitai Qian, “
Polyol-mediated preparation of disklike (ZnSe)2•EN
precursor and its conversion to ZnSe crystals with
quasi-network structure”, Journal of Materials
Research Vol. 19, No. 5, 1369-1373 (2004)
[25] P. A. V. Hal, M. M. Wienk, J. M. Kroon, W.J. H.
Verhees, L.H.Sloff, W.J.H.V. Gennip, P. Jonkhejm,
R.A.J.Janssen, “Hybrid Solar Cells,” Advanced
Materials, Vol.15, pp. 118. (2007)
[26] P. Ravirajan, S. A. Haque and J. R. Durrant, D.
Poplavskyy, D. D. C.Bradley, and J. Nelson, “Hybrid
nanocrystalline TiO2 solar cells with a fluorene–
thiophene copolymer as a sensitizer and hole
conductor”, Journal of Applied Physics, Vol. 95, No.3,
1 February 2004.
[27] W. J. E. Beek, M. M. Wienk, R.A.J. Janssen,“Hybrid
Solar Cells from Regioregular Polythiophene and ZnO
Nanoparticles.” Advanced Functional Materials, Vol.16
(8), 1112(2006).
[28] Waldo J. E. Beek, Martijn M. Wienk, and René A. J.
Janssen, “Hybrid Solar Cells from Regioregular
Polythiophene and ZnO Nanoparticles”,Advanced
Functional Materials, Vol.16, 1112–1116,( 2006).
[29] A. P. Alivisatos, “Semiconductor clusters,
nanocrystals, and quantum dots,” Science, Vol.271, pp.
933 (1996).
[30] Wendy U. Huynh, Janke J. Dittmer, A. Paul
Alivisatos, “Hybrid Nanorod-Polymer Solar Cells”,
Science, Vol. 295 29 MARCH, 2002.
[31] W. Huynh, J. Dittmer, A.P. Alivisatos,“Hybrid nanorod-
polymer solar cells,” Science, Vol.295, pp.2425(2002).
[32] S. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr,
E.J.D. Klem, L. Levina, H.Sargent, “Solution-processed
PbS quantum dot infrared photodetectors and
photovoltaics,” Nature. Materials, Vol. 4, 138 (2005).
[33] E. Arici, H. Hoppe, F. Sch¨affler, D. Meissner, M.A.
Malik, N.S.Sariciftci, “Morphology effects in
nanocrystalline CuInSe2-conjugated polymer hybrid
systems”, Applied Physics A , Vol.79, pp.59–64( 2004).
[34] E. Arici, N.S. Sariciftci, D. Meissner, “Hybrid Solar
Cells Based on Nanoparticles of CuInS2 in Organic
Matrices”, Advanced Functional Materials,Vol.13, No.2
(2003)
[35] Baoquan Sun, Henry J.Snaith, Anoop S. Dhoot, Sebastian
Westenhoff,Neil C. Greenham, “Vertically segregated
hybrid blends for photovoltaic devices with improved
efficiency”, Journal of Applied Physics, Vol.97,014914,
(2005)
[36] Baoquan Sun, Eike Marx, Neil C. Greenham, “
Photovoltaic device using blends of branch CdSe
nanoparticles and conjugated polymer” , Nano Letters,
Vol.3,No.7, 961-963(2003)
[37] Wendy U. Huynh, Janke J. Dittmer, A. Paul
Alivisatos, “Hybrid Nanorod-Polymer Solar Cells”,
Science,Vol. 295, 29(2002)
[38] http://www.newport.com/store/genproduct.aspx?
id=411919&lang=1033& section=Detail
[39] Peter Würfel (2005). The Physics of Solar Cells.
Weinheim: Wiley-VCH.
[40] Antonio Luque, Steven Hegedus, Handbook of
Photovoltaic Science and Engineering 2003,P63
[41] http://www.chem.wisc.edu/areas/organic/orglab/tech
/reflux.htm
[42] 林麗娟,工業材料86期83年2月
[43] http://cmnst.ncku.edu.tw/files/11-1023-2577.php
[44] C.Czekelius, M.Hilgendorff, L. Spanhel, I. Bedja, M.
Lench, G. Muller, U.Bloeck, D.Su, M.Giersig, “A Simple
Colloidal Route to Nanocrystalline ZnO/CuInS2
Bilayers”, Advanced Materials, Vol.11, 643(1999).
[45] Rockett A.and Birkmire R.W., “CuInSe2 for photovoltaic
applications”,Journal of Applied Physics, Vol.70,
(7),1,R81(1991)
[46] J. Pigošová, A. Cigáň, J. Maňka, “Thermal Synthesis of
Bismuth-Doped Yttrium Iron Garnet forMagneto-Optical
Imaging”, Measurement Sience Review, Volume 8, Section
3, No.5(2008)
[47] H.L. Hwang, C.L. Cheng, L.M. Liu, Y.C. Liu, C.Y.
Sun, “Growth and properties of sputter-deposited
CuInS2 thin films”, Thin Solid
Films,Vol. 67, 83 (1980)
[48] Ana M. Peiro´, Punniamoorthy Ravirajan, Kuveshni
Govender, David S.Boyle, Paul O’Brien, Donal D. C.
Bradley, Jenny Nelson and James R.Durranta, “Hybrid
polymer/metal oxide solar cells based on ZnO columnar
structures”, Journal of Materials Chemistry,Vol.16,
2088–2096, (2006)