簡易檢索 / 詳目顯示

研究生: 黃律維
Huang, Lu-Wei
論文名稱: 應用無機奈米粒子與有機高分子製備複合太陽能電池
Hybrid Solar Cells Based on Inorganic Nanoparticles and Conjugated Polymer
指導教授: 高騏
Gau, Chie
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 75
中文關鍵詞: 銅銦硫銅銦硒硫化鋅硒化鋅奈米粒子多元醇法複合太陽能電池
外文關鍵詞: CuInS, CuInSe, ZnS, ZnSe, nanoparticles, polyol route, Hybrid solar cells
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用多元醇法(polyol route)製備銅銦硫(CuInS, CIS)、銅銦硒(CuInSe,CISe)、硫化鋅(ZnS)及硒化鋅 (ZnSe)等奈米粒子,經過X光粉晶繞射儀(X-Ray Diffraction)等其他分析,確認材料性質,摻入高分子有機半導體化合物中, 作為複合太陽能電池之主動層材料,透過調整製程中的膜厚與溫度,以及不同溶劑與濃度比例等參數,達到最佳化的複合太陽能電池。在製備複合太陽能電池,目前做到到最高效率為0.01%,主要導致光電轉換效率仍不高的原因,是由於在奈米粒子與高分子之間的介面上有相的差異,除了以上參數的調整,本研究還針對奈米粒子的表面做改質以及奈米粉末合成的比例,朝這些方向做改善,希望能進一步達到更高效率的複合太陽能電池。目前除了介面上的問題以外,還有材料在能階上匹配的問題,導致原件效率仍有很大的改善空間。

    In this study, polyol route were used to prepare copper indium sulfide (CuInS, CIS), copper indium selenium (CuInSe, CISe), zinc sulfide (ZnS) and zinc selenium (ZnSe) and other nanoparticles. Through the X-ray diffraction and other analysis to confirmed the material properties. Incorporation of polymer organic semiconductor compounds as the active layer of hybrid solar cells. In order to achieve the best performance of the hybrid solar cells, this could be done by the adjustment process in the film thickness and temperature, and various solvents and concentration ratio and other parameters.
    In the preparation of hybrid solar cells, the highest efficiency of the present is 0.01%. The main reasons cause low power conversion efficiency is due to polymer and nanoparticles have phase difference between interfaces. In addition to the above parameters can be adjusted. The study also aimed at the surface modification of the nanoparticles, and the ratio of nanoparticles synthesis. Make improvements in these directions, and hopes to further achieve higher efficiency of hybrid solar cells. Except interface issues, the bandgap of material to match also is an issue. Resulting in the efficiency of device is still much room for improvement.

    授權書 簽署人須知 簽名頁 中文摘要 英文摘要 致謝 目錄………………………………….……………………..………………Ⅰ 表目錄………………………………….………………………..………...Ⅳ 圖目錄………………………………….……………………..…………...Ⅴ 符號說明………………………………….…………………..………....VIII 第一章 緒論 1-1 前言……….……………………………….………………………1 1-1-1 太陽能電池簡介……...…..…………….………………………1 1-1-2 導電高分子材料……...…..…………….………………………2 1-1-3 複合太陽能電池………………………………………………..3 1-2 研究動機…………………………………………..….…………..3 1-3 文獻回顧…………………………………………..….…………..4 1-3-1 奈米粉末合成…………………………………………………4 1-3-2 複合太陽能電池原件………………………………………….5 1-3-3 奈米粉末表面改質…………………………………………….7 第二章 太陽能電池理論與機制 2-1 複合太陽能電池理論與機制……….…….….………………8 2-1-1複合太陽能電池……...…..…………….……………………….8 2-1-2太陽光頻譜………………………………………………………9 2-1-3 太陽能電池特性………………………………………………10 第三章 實驗方法與實驗設備 3-1 實驗方法…………………………………...……………………13 3-1-1 多元醇法合成奈米粉末………………………………………13 3-1-2 元件製成………………………………………………………16 3-1-3 奈米粉末表面改質……………………………………………19 3-2 實驗材料與設備..…………...…………………….…………...20 3-2-1 奈米粒子合成材料與設備…………………………………...20 3-2-2 複合太陽能電池元件製程材料與設備……………………...21 3-3 實驗量測……...………………………………………….……...22 3-3-1 X光粉晶繞射儀(X-Ray Diffraction)…………………………..22 3-3-2穿透式電子顯微鏡(Transmission electron microscopy)….23 3-3-3太陽光模擬器…………………………………………………..23 第四章 實驗結果與討論 4-1 奈米粉末分析…………………………...…………………...…24 4-1-1 X光粉晶繞射儀(X-Ray Diffraction)……………………….24 4-1-2 穿透式電子顯微鏡(Transmission electron microscopy)27 4-2 原件參數與分析………………………………….…………...28 4-2-1效率量測………………………………………………………28 4-2-2穿透吸收分析………………………………………………….31 4-2-3光激發螢光效應(Photoluminescence)分析…………………..31 4-2-4入射光子與電子轉換效率IPCE(%)…………………………32 第五章 結論及未來工作………………………………………..33 參考文獻…………………………..………………..……………………..34 圖表………………………………….………………………………..……40 自述………………………………….……………………………………..74 著作權聲明………………………………….……………………………75

    [1] D.M. Chapin, C.S. Fuller, G.L. Pearson, “A new silicon
    p-n junction photocell for converting solar radiation
    into electrical power”, Journal of Applied Physics,
    Vol.25, 676(1954).
    [2] Waldo J.E. Beek and René A.J. Janssen “Hybrid Polymer-
    Inorganic Photovoltaic Cells” L. Merhari (ed.), Hybrid
    Nanocomposites for Nanotechnology, 321-385.
    [3] M.A. Green, “Third generation photovoltaics: Ultra-high
    conversion efficiency at low cost”, Progress in
    Photovoltaics: Research and Applications ,Vol.9,123
    (2001).
    [4] Y. Chiba, A. Islam, K. Kakutani, R. Komiya, N. Koide,
    L. Han, 15th International Photovoltaic Science and
    Engineering Conference, Shanghai, 665(2005).
    [5] Guangliang Zhang, Hari Bala, Yueming Cheng, Dong Shi,
    Xueju Lv, Qingjiang Yu and Peng Wang, “High efficiency
    and stable dye-sensitized solar cells with an organic
    chromophore featuring a binary p-conjugated spacer”,
    Chemistry Communications,2198–2200,( 2009)
    [6] Gilles Dennler, Markus C. Scharber, and Christoph J.
    Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar
    Cells”, Advanced Materials, Vol.21, 1323–1338(2009).
    [7] Sung Heum Park, Anshuman Roy, Serge Beaupre, Shinuk
    Cho, Nelson Coates1, Ji Sun Moon, Daniel Moses, Mario
    Leclerc, Kwanghee Lee* and Alan J. Heeger, “Bulk
    heterojunction solar cells with internal quantum
    efficiency approaching 100%”, Nature Photonics,
    Vol. 3,297-303, MAY(2009)
    [8] Bright Walker, Arnold B. Tamayo, Xuan-Dung Dang, Peter
    Zalar, Jung Hwa Seo, Andres Garcia, Mananya Tantiwiwat,
    and Thuc-Quyen Nguyen, “Efficiency in Solution
    Processed, Small-Molecule Bulk Heterojunction Solar
    Cells”, Advanced Function. Materials,Vol.19, 3063–3069
    (2009)
    [9] Ning Li, Brian E. Lassiter, Richard R. Lunt, Guodan
    Wei, and Stephen R.Forrest, “Open circuit voltage
    enhancement due to reduced dark current in
    small molecule photovoltaic cells”, Applied Physics
    Letters,Vol.94, 023307 ,(2009)
    [10] Serap Gunes , Niyazi Serdar Sariciftci, “Review Hybrid
    solar cells”,Inorganica Chimica Acta ,Vol.361,581–588
    (2008)
    [11] Chin-Yi Liu, Zachary C. Holman, and Uwe R.
    Kortshagen, “Hybrid Solar Cells from P3HT andSilicon
    Nanocrystals”, Nano Letters., Vol. 9, No. 1,(2009).
    [12] R.Farchioni, G.Grosso. Organic Electronic Materials
    P.4 (2001)
    [13] Bao Z , Dodabalapur A , Lovinger A “Soluble and
    processable regioregular poly(3-hexylthiophene) for
    thin-film field-effect transistor applications with
    high mobility” . Applied Physics Letters, Vol.69,
    4108 . (1996)
    [14] Babel A , Jenekhe SA,” High electron mobility in
    ladder polymer field-effect transistors”, Journal of
    American Chemical Society ,Vol.125,13656 (2003) .
    [15] E. Arici, D. Meissner, F. Schaffler, N.S.
    Sariciftci, “Core/Shell nanomaterials in
    photovoltaics”, International Journal of Photoenergy,
    Vol. 5,199(2003).
    [16] N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F.
    Wudl, “Photoinduced electron transfer from a
    conducting polymer to buckminsterfullerene”,
    Science ,Vol.258, 1474(1992).
    [17] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J.
    Heeger, “Polymer Photovoltaic Cells: Enhanced
    Efficiencies via a Network of Internal Donor-Acceptor
    Heterojunctions”, Science,Vol. 270, 1789(1995).
    [18] V.S. Gurin, Colloids Surf., “Nanoparticles of ternary
    semiconductors in colloids Low-temperature formation
    and quantum size effects”, Colloids and Surfaces A:
    Physicochemical and Engineering Aspects, Vol.142/1, 35
    (1998).
    [19] H. Zhong, Y. Li, M. Ye, Z. Zhu, Y. Zhou, C. Yang, Y.
    Li, “A facile route to synthesize chalcopyrite CuInSe2
    nanocrystals in non-coordinating solvent”,
    Nanotechnology ,Vol.18/2, 025602(2007).
    [20] T. Wada, H. Kinoshita,” Preparation of CuIn(S,Se)2 by
    mechanochemical process”, Thin Solid Films, Vol.92,
    480–481 (2005).
    [21] B. Li, Y. Xie, J. Huang, Y. Qian, “Synthesis by a
    Solvothermal Route and Characterization of CuInSe2
    Nanowhiskers and Nanoparticles”, Advanced Materials,
    Vol.11/17,1456(1999).
    [22] H. Grisaru, O. Palchik, A. Gedanken, V. Palchik, M.A.
    Slifkin, A.M. Weiss, “Preparation of Cd1-xZnxSe Using
    Microwave-Assisted Polyol Synthesis”, Inorganic
    Chemistry. Vol.42/22 , 7148 (2003).
    [23] Yu wen Zhao, Yong Zhang, Hao Zhu, George C.
    Hadjipanayis, and John Q. Xiao, “Low-Temperature
    Synthesis of Hexagonal (Wurtzite)ZnS Nanocrystals”,
    Journal of American Chemical Society, Vol.126, 6874
    -6875(2004)
    [24] Guozhen Shen, Di Chen, Kaibin Tang, and Yitai Qian, “
    Polyol-mediated preparation of disklike (ZnSe)2•EN
    precursor and its conversion to ZnSe crystals with
    quasi-network structure”, Journal of Materials
    Research Vol. 19, No. 5, 1369-1373 (2004)
    [25] P. A. V. Hal, M. M. Wienk, J. M. Kroon, W.J. H.
    Verhees, L.H.Sloff, W.J.H.V. Gennip, P. Jonkhejm,
    R.A.J.Janssen, “Hybrid Solar Cells,” Advanced
    Materials, Vol.15, pp. 118. (2007)
    [26] P. Ravirajan, S. A. Haque and J. R. Durrant, D.
    Poplavskyy, D. D. C.Bradley, and J. Nelson, “Hybrid
    nanocrystalline TiO2 solar cells with a fluorene–
    thiophene copolymer as a sensitizer and hole
    conductor”, Journal of Applied Physics, Vol. 95, No.3,
    1 February 2004.
    [27] W. J. E. Beek, M. M. Wienk, R.A.J. Janssen,“Hybrid
    Solar Cells from Regioregular Polythiophene and ZnO
    Nanoparticles.” Advanced Functional Materials, Vol.16
    (8), 1112(2006).
    [28] Waldo J. E. Beek, Martijn M. Wienk, and René A. J.
    Janssen, “Hybrid Solar Cells from Regioregular
    Polythiophene and ZnO Nanoparticles”,Advanced
    Functional Materials, Vol.16, 1112–1116,( 2006).
    [29] A. P. Alivisatos, “Semiconductor clusters,
    nanocrystals, and quantum dots,” Science, Vol.271, pp.
    933 (1996).
    [30] Wendy U. Huynh, Janke J. Dittmer, A. Paul
    Alivisatos, “Hybrid Nanorod-Polymer Solar Cells”,
    Science, Vol. 295 29 MARCH, 2002.
    [31] W. Huynh, J. Dittmer, A.P. Alivisatos,“Hybrid nanorod-
    polymer solar cells,” Science, Vol.295, pp.2425(2002).
    [32] S. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr,
    E.J.D. Klem, L. Levina, H.Sargent, “Solution-processed
    PbS quantum dot infrared photodetectors and
    photovoltaics,” Nature. Materials, Vol. 4, 138 (2005).
    [33] E. Arici, H. Hoppe, F. Sch¨affler, D. Meissner, M.A.
    Malik, N.S.Sariciftci, “Morphology effects in
    nanocrystalline CuInSe2-conjugated polymer hybrid
    systems”, Applied Physics A , Vol.79, pp.59–64( 2004).
    [34] E. Arici, N.S. Sariciftci, D. Meissner, “Hybrid Solar
    Cells Based on Nanoparticles of CuInS2 in Organic
    Matrices”, Advanced Functional Materials,Vol.13, No.2
    (2003)
    [35] Baoquan Sun, Henry J.Snaith, Anoop S. Dhoot, Sebastian
    Westenhoff,Neil C. Greenham, “Vertically segregated
    hybrid blends for photovoltaic devices with improved
    efficiency”, Journal of Applied Physics, Vol.97,014914,
    (2005)
    [36] Baoquan Sun, Eike Marx, Neil C. Greenham, “
    Photovoltaic device using blends of branch CdSe
    nanoparticles and conjugated polymer” , Nano Letters,
    Vol.3,No.7, 961-963(2003)
    [37] Wendy U. Huynh, Janke J. Dittmer, A. Paul
    Alivisatos, “Hybrid Nanorod-Polymer Solar Cells”,
    Science,Vol. 295, 29(2002)
    [38] http://www.newport.com/store/genproduct.aspx?
    id=411919&lang=1033& section=Detail
    [39] Peter Würfel (2005). The Physics of Solar Cells.
    Weinheim: Wiley-VCH.
    [40] Antonio Luque, Steven Hegedus, Handbook of
    Photovoltaic Science and Engineering 2003,P63
    [41] http://www.chem.wisc.edu/areas/organic/orglab/tech
    /reflux.htm
    [42] 林麗娟,工業材料86期83年2月
    [43] http://cmnst.ncku.edu.tw/files/11-1023-2577.php
    [44] C.Czekelius, M.Hilgendorff, L. Spanhel, I. Bedja, M.
    Lench, G. Muller, U.Bloeck, D.Su, M.Giersig, “A Simple
    Colloidal Route to Nanocrystalline ZnO/CuInS2
    Bilayers”, Advanced Materials, Vol.11, 643(1999).
    [45] Rockett A.and Birkmire R.W., “CuInSe2 for photovoltaic
    applications”,Journal of Applied Physics, Vol.70,
    (7),1,R81(1991)
    [46] J. Pigošová, A. Cigáň, J. Maňka, “Thermal Synthesis of
    Bismuth-Doped Yttrium Iron Garnet forMagneto-Optical
    Imaging”, Measurement Sience Review, Volume 8, Section
    3, No.5(2008)
    [47] H.L. Hwang, C.L. Cheng, L.M. Liu, Y.C. Liu, C.Y.
    Sun, “Growth and properties of sputter-deposited
    CuInS2 thin films”, Thin Solid
    Films,Vol. 67, 83 (1980)
    [48] Ana M. Peiro´, Punniamoorthy Ravirajan, Kuveshni
    Govender, David S.Boyle, Paul O’Brien, Donal D. C.
    Bradley, Jenny Nelson and James R.Durranta, “Hybrid
    polymer/metal oxide solar cells based on ZnO columnar
    structures”, Journal of Materials Chemistry,Vol.16,
    2088–2096, (2006)

    下載圖示 校內:2011-08-27公開
    校外:2013-08-27公開
    QR CODE