| 研究生: |
施建全 Shih, Chien-chuan |
|---|---|
| 論文名稱: |
經由芳香環碳−磷鍵及碳−氫鍵斷裂合成1,2,3,4−四取代萘 Synthesis of 1,2,3,4−Tetrasubstituted Naphthalenes via a aryl C−P Bond and a C−H Bond Cleavages |
| 指導教授: |
吳耀庭
Wu, Yao-ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 氫芳香化 、碳-氫鍵斷裂 |
| 外文關鍵詞: | Hydroarylation, C-H Bond Cleavage |
| 相關次數: | 點閱:113 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三苯基磷及二苯乙炔 (31a) 於鈀錯合物催化下可合成1,2,3,4-四苯萘 (33a),數種鈀錯合物的催化效能、苯基磷化物的反應性、溶劑及添加物的影響已被測試。反應條件已調整至最佳化:三苯基磷及31a的乙睛溶液於110 ℃下藉由注射幫浦加入本實驗室發展的催化系統中,可得到33a (62%)。據我們所知,這是第一個經由苯基碳-磷鍵及碳-氫鍵活化製備萘環化合物的例子。依據此合成方法,5種萘環衍生物已被製備,產率22-62%。
5,8-二甲基-1,2,3,4-四苯萘 (35a) 於醋酸鈀催化下,可由對二甲苯及31a直接合成。此法提供三種顯著的好處: 簡單、乾淨及原子經濟。從35a的結構可知,芳烴提供一個苯基經由兩次芳香環碳-氫鍵活化以建構萘環。本反應條件已被最適化。依據此步驟,四個多取代萘35ab、35ac、35bb及35cc已被製備(22-45%)。
1,2,3,4-Tetraphenylnaphthalene (33a) can be prepared from the reaction of triphenylphosphine and diphenylacetylene (31a) in the presence of the palladium catalyst. The catalytic efficiencies of several palladium complexes, the reactivity of phenylphosphine compounds and the
contributions from solvents and additives have been examined. The reaction conditions have been optimized: When the solution of triphenylphosphine and 31a in acetonitrile was added to our developed catalytic system by a syringe pump at 110 ℃, and 33a could be obtained in 62% yield. To our best knowledge, this is the first example for the preparation of naphthalenes via the activation of a phenyl C-P bonds and C-H bonds. Based on this synthetic method, five naphthalene derivatives have been prepared in 22-62% yields.
5,8-Dimethyl-1,2,3,4-tetraphenylnaphthalene (35a) can be accessible directly from p-xylene and 31a under the catalysis of palladium acetate. This protocol provides three obvious advantages: simple, clean and atomic economics. From the structure of 35, an arene offers a〝benzo〞unit to construct a naphthalene core via double aryl C-H activations. Our coworker has optimized the reaction conditions. Based on the procedure, four highly substituted naphthalenes 35ab, 35ac, 35bb and 35cc have been prepared in 22-45% yields.
1 Trost, B. M. Science 1991, 254, 1471.
2 Trost, B. M. Angew. Chem. Int. Ed. Engl. 1995, 34,
259.
3 Kirk, R. E.; Othmer, D. F. Encyclopedia of Chemical
Technology, 4th Ed. Wiley, New York, 1998.
4 James, D. H.; Castor, W. M. Ullmann’s Encyclopedia
of Industrial Chemistry, 5th ed.; (Elvers, S.;
Hawkins, S.; Russey, W. Ed), VCH Weinheim, 1994, A25,
329.
5 Kakiuchi, F.; Yamauchi, M.; Chatani, N.; Murai, S.
Chem. Lett. 1996, 111.
6 (a) Miura, M.; Tsuda, T.; Satoh, T.; Nomura, M. Chem.
Lett. 1997, 1103. (b) Miura, M.; Tsuda, T.; Satoh,
T.; Pivsa-Art, S.; Nomura, M. J. Org. Chem. 1998, 63,
5211.
7 Moritani, I.; Fujiwara, Y. Tetrahedron Lett. 1967,
1119.
8 Shue, R. S. J. Chem. Soc. Chem. Commun. 1971, 1510.
9 Tsuji, J.; Nagashima, H. Tetrahedron 1984, 40, 2699.
10 Jia, C.; Kitamura, T.; Fujiwara Y. Acc. Chem. Res.
2001, 34, 633.
11 Lu, W.; Jia, C.; Kitamura, T.; Fujiwara, Y. Org.
Lett. 2000, 2, 2729.
12 Trost, B. M.; Toste, F. D.; Greenman, K. J. Am. Chem.
Soc. 2003, 125, 4518.
13 Oyamada, J.; Jia, C.; Fujiwara, Y.; Kitamura, T.
Chem. Lett. 2002, 380.
14 Kawasaki, S.; Satoh, T.; Miura, M.; Nomura, M. J.
Org. Chem. 2003, 68, 6836.
15 Garrou, P. E. Chem. Rev. 1985, 85, 171.
16 Kikukawa, K.; Yamane, T.; Takagi, M.; Matsuda, T. J.
C. S. Chem. Comm. 1972, 695.
17 Ryabov, A. D.; Yatsimirsky, A. K. J. Mol. Catal.
1978, 4, 449.
18 Sakamoto, M.; Shimizu, I.; Yamamoto, A. Chem. Lett.
1995, 1101.
19 Hwang, L. K.; Na, Y.; Lee, J.; Do, Y.; Chang, S.
Angew. Chem. Int. Ed. 2005, 44, 6166.
20 Dyker, G. J. Org. Chem. 1993, 58, 234.
21 (a) Larock, R. C.; Tian, Q. J. Org. Chem. 2001, 66,
7372. (b) Kawasaki, S.; Satoh, T.; Miura, M.; Nomura,
M. J. Org. Chem. 2003, 68, 6836.
22 Bennett, M. A.; Hockless, D. C. R.; Wenger, E.
Organometallics 1995, 14, 2091.
23 Herwig, W.; Metlesics, W.; Zeiss, H. J. Am. Chem.
Soc. 1969, 81, 6203.
24 (a) Takahashi, T.; Hara, R.; Nishihara, Y.; Kotora M.
J. Am. Chem. Soc. 1996, 118, 5154. (b) Takahashi, T.;
Li, Y.; Stepnicka, P.; Kitamura, M.; Liu, Y.;
Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 2002, 124,
576.
25 Huang, W.; Zhou, X.; Kanno, K.i.; Takahashi T. Org.
Lett. 2004, 6, 2429.
26 Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. J. Am.
Chem. Soc. 1999, 121, 5827.
27 Yamane, T.; Kikukawa, K.; Takagi, M.; Matsuda, T.
Tetrahedron, 1973, 29, 955.
28 Chen, X.; Li, J.J.; Hao, X.S.; Goodhue, C. E.;
Yu, J.Q. J. Am. Chem. Soc. 2006, 128, 78.
29 Menashe, N.; Shvo, Y. J. Org. Chem. 1993, 58, 7434.
30 Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113,
9585.
31 Amatore, C.; Came, E.; Jutand, A.; M'Barki, M. A.;
Meyer, G. Organometallics 1995, 14, 5605.
32 Brandsma, L.; Vasilevsky, S. F.; Verkruijsse, H. D.
Application of Transition Metal Catalysts in Organic
Synthesis, 1997, pp. 219.
33 Mio, M. J.; Kopel, L. C. Org. Lett. 2002, 4, 3199.
34 Brizius, G.; Uwe, H.; Bunz, F. Org. Lett. 2002, 4,
2829.
35 Wu, Y.-T.; Hayama, T.; Baldridge, K. K.; Linden, A.;
Siegel J. S. J. Am. Chem. Soc. 2006, 128, 6870.
36 Johnson, S. A.; Liu, F.Q. J. Am. Chem. Soc. 2003,
125, 4199.
37 Ma, S.; He, Q. Tetrahedron, 2006, 62, 2769.
38 Howell, J. A. S.; Palin, M. G.; Yates. P. C.;
Moardle, P. J. Chem. Soc. Perkin Trans. 2 1992, 10,
1769.
39 Nakamura, M.; Miki, M.; Majima, T. J. Chem. Soc.
Perkin Trans. 2 2000, 7, 1447.
40 Richter, B.; Wolf, E.d.; Koten, G. V.; Deelman, B. J.
J. Org. Chem. 2000, 65, 3885.
41 Ziegler, C. B.; Heck, R. F. J. Org. Chem. 1978, 43,
2741.