簡易檢索 / 詳目顯示

研究生: 李琬晴
Lee, Wan-Ching
論文名稱: 使用肌內效貼布與護踝在蹠屈肌疲勞後對於功能性踝關節不穩運動員動作表現的影響
The Effect of kinesio tape and lace-up ankle brace on movement after fatiguing plantar flexor muscle in athletes with functional ankle instability (FAI)
指導教授: 林呈鳳
Lin, Cheng-Feng
學位類別: 碩士
Master
系所名稱: 醫學院 - 物理治療學系
Department of Physical Therapy
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 112
中文關鍵詞: 腳踝扭傷外在護具姿勢控制單腳側落著地單腳往前跳躍著地
外文關鍵詞: ankle sprain, external support, postural control, single-leg lateral drop landing, one-leg jump landing
相關次數: 點閱:110下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:腳踝扭傷是運動員常見的肌肉骨骼傷害,其中超過八成來自於內翻性扭傷造成。腳踝扭傷常見發生在比賽後半段或長時間的訓練後,顯示由於持續肌肉收縮導致疲勞是腳踝扭傷重要的因素。運動員常見使用護踝或肌內效貼布等外在護具預防復發性腳踝扭傷,但鮮少研究探討對於護具在肌肉疲勞後如何影響踝關節不穩運動員的動作控制與肌肉活性;因此,本篇研究目的為探討使用護踝與肌內效貼布在蹠屈肌疲勞後對於功能性踝關節不穩運動員動作表現的影響。
    方法:三十三位踝關節失能量表(CAIT)分數低於24分的運動員被定義為功能性踝關節不穩,並被分配到控制組(n=11)、肌貼組(n=11) 和護踝組(n=11)。實驗流程需先收集疲勞前測資料,包括單腳往前跳躍著地(one-leg jump landing)與單腳側落著地(single-leg lateral drop landing),接著進行蹠屈肌疲勞測試;疲勞測試結束後再執行相同動作收集疲勞後測資料。肌貼組使用肌內效貼布分別貼在脛前肌、腓長肌和腓腸肌三條肌肉,而護踝組則使用綁帶型護踝(lace-up ankle brace);在疲勞測試與疲勞後測皆給予兩組運動員不同護具使用。主要分析參數包括單腳往前跳躍著地和單腳側落著地在疲勞前測與後測的下肢關節角度、肌電訊號與肌肉共同收縮指數、運動學與力學表現。使用克‐瓦二氏檢定 (Kruskal‐Wallis test)比較三組疲勞前後的差值是否有顯著差異。
    結果:在疲勞狀態下,沒有使用護具的運動員在單腳側落著地 (1)有較多的關節動作; (2)最大垂直地面反作用力下降; (3) 身體質量中心的晃動變大; (4)身體壓力中心的距離增加與速度變大。使用護踝的運動員在單腳側落著地 (1)使用較伸直姿勢的著地方式; (2)最大垂直地面反作用力增加; (3)腓腸肌在著地後100毫秒的肌電訊號減少。使用肌貼的運動員在單腳側落著地 (1)減少身體動作控制時的晃動; (2)最大垂直地面反作用力減少。有無使用護具的運動員在單腳往前跳躍著地動作上則並無太多差異;整體而言,在疲勞後使用護具的運動員的下肢關節角度有重新分配的變化:踝關節的背屈角度減少而增加膝關節與髖關節的伸直角度。另外,著地前的腓腸肌肌電訊號上升
    結論:疲勞會使動態動作控制變差並讓蹠屈肌無法有效的出力;使用綁帶型護踝能夠提供腳踝較高的穩定度並減少身體動作控制的晃動,但被動的角度限制反而讓踝關節在著地時承受過多的力量並抑制正常肌肉活性的表現。而使用肌內效貼布能夠提供踝關節在著地時處在較好的位置並改善腳踝吸收力量的表現,但較無法提供對於遠端關節間的動作控制。對於需要長期使用護具的運動員來說,需要額外訓練下肢肢段間神經肌肉控制與加強腳踝附近肌群的肌力訓練,降低再次 傷害的可能性。

    Background: Ankle sprain is a prevalent musculoskeletal injury that occurs in athletes, and more than 80% of ankle sprains are caused by inversion trauma. Ankle sprain commonly occurs in the later period during matches or in prolong training, it gives a clue that timing is an important factor to ankle sprain, because a constant muscle contraction leads to muscle fatigue. It is common for athletes using external ankle support such as ankle brace or kinesio tape in preventing recurrent ankle sprain. The effect of external support, however, combing fatigue condition to evaluate how external support affect movement control and muscle activity is still unknown. The purpose of this study was to investigate the immediate changes of kinetics, kinematics, and EMG parameters after fatiguing plantar flexor muscle in functional ankle instability athletes with or without external support.
    Method: Thirty-three athletes who had CAIT score less than 24 were identified with functional ankle instability (FAI). They were allocated to the control group (n=11), the ankle brace group (n=11), and the kinesio tape group (n=11). The process of the experiment was conducted from pre-fatigue tasks including single-leg lateral drop landing and one-leg jump landing to plantar flexor muscle fatigue protocol and then post-fatigue tasks the same as the pre-fatigue tasks. The kinesio tape group applied kinesio tape on tibialis anterior, peroneus longus, and gastrocnemius, and the ankle brace group applied lace-up ankle brace during fatigue protocol and post-fatigue tasks, respectively. The outcome measures were the joint angle of lower extremity, muscle activity, the co-contraction index, and the kinetic and kinematic variables. The Kruskal-Wallis test was performed to test the significance of median of all dependent variables among three groups. The post hoc test was then conducted for any group difference.
    Results: In fatigue condition, the athletes without external support performed single-leg lateral drop landing (1) had a greater joint motion and; (2) had a decreased peak vertical group reaction force (3) had greater COM range; (4) increased COP range with faster COP velocity. After fatigue, the athletes with ankle brace performed single-leg lateral drop landing with (1) an extended landing posture and; (2) an increased peak vertical ground reaction force; (3) a decreased muscle activity of gastrocnemius in the post 100ms landing phase. In athletes with kinesio tape, they had (1) a decreased postural sway; (2) a decreased peak vertical ground reaction force in single-leg lateral drop landing. During one-leg jump landing task, little difference was found, the athletes with external support redistributed joint motion after fatigue; they had a decreased ankle dorsiflexion, and had extended joint angle upon knee and hip joint. In addition, an increased muscle activation of gastrocnemius was found in pre-landing phase.
    Conclusions: Fatigue impaired dynamic postural control and disabled ankle musculature from sufficient force output. The application of lace-up ankle brace provided ankle joint stability and less postural sway, but the passive constraint put ankle joint to sustain excessive force and inhibited normal muscle activation after landing. The use of kinesio tape provided ankle joint a better landing position and dissipated force while it had little support on proximal joints. Athletes with ankle instability utilized external support for long-term use, additional inter-segmental neuromuscular control and ankle musculature strengthening program would be necessary to prevent secondary injury

    目錄(Table of Content) 中文摘要 (Chinese abstract) ………………………………………...III 英文摘要 (English abstract) …………………………………....V 致謝 (Acknowledgement) …………………………………………VIII 目錄 (Table of content) …………………………………………...X 表目錄 (List of Table) ………………………………………………...XII 圖目錄 (List of Figure) ……………………………………………………XIV Chapter 1 Background ………………………………………………1 Chapter 2 Literature review ………………………………………...3 2.1 Epidemiology of ankle instability …………...3 2.2 Ankle instability and postural control……..5 2.3 Electromyography study for ankle instability………….6 2.3.1 Root mean square (RMS) …………………………………6 2.3.2 Co-contraction index (CI) …………………………7 2.3.3 Muscle reaction time ………………………………8 2.4 Kinetic study ………………………………………………………9 2.5 Fatigue effect ……………………………………………………10 2.6 External support ……………………………………………………13 2.7 Research purpose ………………………………………..14 2.8 Hypothesis …………………………………………….15 Chapter 3 Method ……………………………………………..16 3.1 Subjects …………………………………………….16 3.2 Instruments ……………………………………………17 3.2.1 Motion capture system …………………………..17 3.2.2 Force plate ………………………………….19 3.2.3 Surface electromyography ……………………………19 3.3 Experimental procedure ………………………………………………19 3.3.1 Task collection …………………………………...22 3.3.2 Fatigue protocol ……………………………….24 3.3.3 Kinesio tape and lace-up ankle brace application ……………….26 3.4 Data reduction ……………………………………...28 3.4.1 Parameters ………………………………….28 3.4.2 Phase Definition ……………………………………33 3.5 Statistical analysis ………………………….33 Chapter 4 Result ………………………………………………………35 4.1 Basic data …………………………………………..35 4.2 One-leg jump landing ……………………………………37 4.2.1 Kinetic parameters ………………………………….37 4.2.2 Kinematic parameters …………………………………43 4.2.3 COM-COP maximal displacement.…………………51 4.2.4 EMG parameters ……………………………………………………55 4.3 Single-leg lateral drop landing ……………………………..59 4.3.1 Kinetic parameters …………………………………….59 4.3.2 Kinematic parameters ……………………………………66 4.3.3 COM-COP maximal displacement ………... 73 4.3.4 EMG parameters ……………………………………………………78 Chapter 5 Discussion …………………………………………….82 5.1 One-leg jump landing …………………………………………82 5.1.1 Kinetic parameters ………………………………….82 5.1.2 Kinematic parameters ………………………………………84 5.1.3 EMG parameters …………………………………………………85 5.2 Single-leg lateral drop landing ……………………………..86 5.2.1 Kinetic parameters …………………………………….86 5.2.2 Kinematic parameters ………………………………………90 5.2.3 EMG parameters ……………………………………………………92 5.3 Limitation ……………………………………….……….93 Chapter 6 Conclusion ……………………………………..……. 95 Reference ………………………………………………………….97 附錄 (Appendix) ……………………………………………..111   表目錄(List of Table) Table 3-1 Borg Rate of Perceive Exertion scale ……………………………………………..25 Table 4-1 Basic data ………………………………………………………………………….36 Table 4-2 Kruskal-Wallis Test and post hoc of kinetic variables for one-leg jump landing in the three groups ………………………………………………………...39 Table 4-3 Kruskal-Wallis Test and post hoc of difference of COP variables in dynamic phase during one-leg jump landing in the three groups …………………………...41 Table 4-4 Kruskal-Wallis Test and post hoc of difference of COP variables in balance phase during one-leg jump landing in the three groups …………………………...42 Table 4-5 Kruskal-Wallis Test and post hoc of difference of joint angle at initial contact for one-leg jump landing in the three groups ……………………………..46 Table 4-6 Kruskal-Wallis Test and post hoc of difference of maximal joint angle for one-leg jump landing in the three groups ……………………………………...48 Table 4-7 Kruskal-Wallis Test and post hoc of difference of range of joint angle for one-leg jump landing in the three groups ……………………………………...50 Table 4-8 Kruskal-Wallis Test and post hoc of difference of COM variables in dynamic phase during one-leg jump landing in the three groups …………………52 Table 4-9 Kruskal-Wallis Test and post hoc of difference of COM variables in balance phase during one-leg jump landing in the three groups …………………..53 Table 4-10 Kruskal-Wallis Test and post hoc of difference of COM-COP maximal displacement during one-leg jump landing in the three groups …………...................................54 Table 4-11 Kruskal-Wallis Test and post hoc of difference of root mean square of EMG (%MVC) for one-leg jump landing in the three groups ………………..57 Table 4-12 Kruskal-Wallis Test and post hoc of difference of co-contraction index (%) for one-leg jump landing in the three groups …………………………58 Table 4-13 Kruskal-Wallis Test and post hoc of kinetic variables for single-leg lateral drop landing in the three groups ………………………………………….61 Table 4-14 Kruskal-Wallis Test and post hoc of difference of COP variables in dynamic phase during single-leg lateral drop landing in the three groups ………64 Table 4-15 Kruskal-Wallis Test and post hoc of difference of COP variables in balance phase during single-leg lateral drop landing in the three groups ……….65 Table 4-16 Kruskal-Wallis Test and post hoc of difference of joint angle at initial contact for single-leg lateral drop landing in the three groups …………………..68 Table 4-17 Kruskal-Wallis Test and post hoc of difference of maximal joint angle for single-leg lateral drop landing in the three groups …………………….69 Table 4-18 Kruskal-Wallis Test and post hoc of difference of range of joint angle for single-leg lateral drop landing in the three groups …………………………………………71 Table 4-19 Kruskal-Wallis Test and post hoc of difference of COM variables in dynamic phase during single-leg lateral drop landing in the three groups ………75 Table 4-20 Kruskal-Wallis Test and post hoc of difference of COM variables in balance phase during single-leg lateral drop landing in the three groups ……….76 Table 4-21 Kruskal-Wallis Test and post hoc of difference of COM-COP maximal displacement during single-leg lateral drop landing in the three groups ………………………...77 Table 4-22 Kruskal-Wallis Test and post hoc of difference of root mean square of EMG (%MVC) for single-leg lateral drop landing in the three groups ……….80 Table 4-23 Kruskal-Wallis Test and post hoc of difference of co-contraction index (%) for single-leg lateral drop landing in the three groups ………………..81   圖目錄 (List of Figure) Figure3-1 Camera ……………………………………………………………………………18 Figure 3-2 Marker setting ……………………………………………………………………18 Figure 3-3 Flow chart of experimental procedure …………………………………………...21 Figure 3-4 Single-leg lateral drop landing …………………………………………………...22 Figure 3-5 One-leg jump landing …………………………………………………………….23 Figure 3-6 The demonstration of One-leg jump landing …………………………………….24 Figure 3-7 Fatigue protocol ………………………………………………………………….25 Figure 3-8 External support ………………………………………………………………….27 Figure 3-9 Kinesio tape application ………………………………………………………….27 Figure 3-10 The force plate coordinate and global coordinate ………………………………28 Figure 4-1 Peak vertical ground reaction force during one-leg jump landing ……………….38 Figure 4-2 Loading rate during one-leg jump landing ……………………………………….38 Figure 4-3 Loading time during one-leg jump landing ………………………………………38 Figure 4-4 Joint angle at initial contact during one-leg jump landing ……………………….43 Figure 4-5 Maximal joint angle during one-leg jump landing ……………………………….44 Figure 4-6 Range of joint angle during one-leg jump landing ……………………………….45 Figure 4-7 The root mean square of EMG during one-leg jump landing ……………………56 Figure 4-8 Peak vertical ground reaction force during single-leg lateral drop landing ……...59 Figure 4-9 Loading rate during single-leg lateral drop landing ……………………………...60 Figure 4-10 Loading time during single-leg lateral drop landing ……………………………60 Figure 4-11 The COP range in dynamic phase during single-leg lateral drop landing ………63 Figure 4-12 The COP velocity in dynamic phase during single-leg lateral drop landing ……63 Figure 4-13 Maximal joint angle during single-leg lateral drop landing …………………….67 Figure 4-14 Range of joint angle during single-leg lateral drop landing …………………….67 Figure 4-15 The COM range in dynamic phase during single-leg lateral drop landing ……..74 Figure 4-16 The root mean square of EMG during single-leg lateral drop landing …………79

    Adam, A., & De Luca, C. J. (2003). Recruitment order of motor units in human vastus lateralis muscle is maintained during fatiguing contractions. Journal of neurophysiology, 90(5), 2919-2927.
    Aguilar-Ferrandiz, M. E., Castro-Sanchez, A. M., Mataran-Penarrocha, G. A., Garcia-Muro, F., Serge, T., & Moreno-Lorenzo, C. (2013). Effects of kinesio taping on venous symptoms, bioelectrical activity of the gastrocnemius muscle, range of ankle motion, and quality of life in postmenopausal women with chronic venous insufficiency: a randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 94(12), 2315-2328. doi: 10.1016/j.apmr.2013.05.016
    Ali, N., Andersen, M. S., Rasmussen, J., Robertson, D. G. E., & Rouhi, G. (2014). The application of musculoskeletal modeling to investigate gender bias in non-contact ACL injury rate during single-leg landings. Computer methods in biomechanics and biomedical engineering, 17(14), 1602-1616.
    Babins, E. M. (2012). Lace-up ankle braces reduced acute ankle injuries in high school basketball players. Clinical Journal of Sport Medicine, 22(4), 379-380.
    Bahr, R., Pena, F., Shine, J., Lew, W. D., Lindquist, C., Tyrdal, S., & Engebretsen, L. (1997). Mechanics of the anterior drawer and talar tilt tests: a cadaveric study of lateral ligament injuries of the ankle. Acta Orthopaedica, 68(5), 435-441.
    Barrett, J., & Bilisko, T. (1995). The role of shoes in the prevention of ankle sprains. Sports Medicine, 20(4), 277-280.
    Baumhauer, J. F., Alosa, D. M., Renström, P. A., Trevino, S., & Beynnon, B. (1995). A prospective study of ankle injury risk factors. The American journal of sports medicine, 23(5), 564-570.
    Bigland‐Ritchie, B., & Woods, J. (1984). Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle & nerve, 7(9), 691-699.
    Boham, M., DeBeliso, M., Harris, C., Pfeiffer, R., McChesney, J., & Berning, J. M. (2013). The effects of functional fatigue on ground reaction forces of a jump, land, and cut task. International Journal of Science and Engineering Investigations.
    Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med, 2, 92-98.
    Boyas, S., Hajj, M., & Bilodeau, M. (2013). Influence of ankle plantarflexor fatigue on postural sway, lower limb articular angles, and postural strategies during unipedal quiet standing. Gait Posture, 37(4), 547-551. doi: 10.1016/j.gaitpost.2012.09.014
    Brand, R. L., Black, H. M., & Cox, J. S. (1977). The natural history of inadequately treated ankle sprain. The American journal of sports medicine, 5(6), 248-249.
    Brazen, D. M., Todd, M. K., Ambegaonkar, J. P., Wunderlich, R., & Peterson, C. (2010). The effect of fatigue on landing biomechanics in single-leg drop landings. Clin J Sport Med, 20(4), 286-292. doi: 10.1097/JSM.0b013e3181e8f7dc
    Brazen, D. M., Todd, M. K., Ambegaonkar, J. P., Wunderlich, R., & Peterson, C. (2010). The effect of fatigue on landing biomechanics in single-leg drop landings. Clinical Journal of Sport Medicine, 20(4), 286-292.
    Briem, K. (2011). Effects of kinesio tape compared with nonelastic sports tape and the untaped ankle during a sudden inversion perturbation in male athletes. The Journal of orthopaedic and sports physical therapy, 41(5), 328.
    Bulucu, C., Thomas, K. A., Halvorson, T. L., & Cook, S. D. (1991). Biomechanical evaluation of the anterior drawer test: the contribution of the lateral ankle ligaments. Foot & ankle international, 11(6), 389-393.
    Campoy, F. A. S., de Oliveira Coelho, L. R., Bastos, F. N., Júnior, J. N., Vanderlei, L. C. M., Monteiro, H. L., . . . Pastre, C. M. (2011). Investigation of risk factors and characteristics of dance injuries. Clinical Journal of Sport Medicine, 21(6), 493-498.
    Caputo, A. M., Lee, J. Y., Spritzer, C. E., Easley, M. E., DeOrio, J. K., Nunley, J. A., & DeFrate, L. E. (2009). In vivo kinematics of the tibiotalar joint after lateral ankle instability. The American journal of sports medicine, 37(11), 2241-2248.
    Caulfield, B., & Garrett, M. (2004). Changes in ground reaction force during jump landing in subjects with functional instability of the ankle joint. Clinical Biomechanics, 19(6), 617-621.
    Caulfield, B. M., Crammond, T., O’Sullivan, A., Reynolds, S., & Ward, T. (2010). Altered ankle-muscle activation during jump landing in participants with functional instability of the ankle joint. JSR, 13(3).
    Cheng, A. J., & Rice, C. L. (2005). Fatigue and recovery of power and isometric torque following isotonic knee extensions. Journal of applied physiology, 99(4), 1446-1452.
    Chou, L.-S., Kaufman, K. R., Brey, R. H., & Draganich, L. F. (2001). Motion of the whole body's center of mass when stepping over obstacles of different heights. Gait Posture, 13(1), 17-26.
    Chou, L.-S., Kaufman, K. R., Hahn, M. E., & Brey, R. H. (2003). Medio-lateral motion of the center of mass during obstacle crossing distinguishes elderly individuals with imbalance. Gait Posture, 18(3), 125-133.
    Collins, D. F., Refshauge, K. M., Todd, G., & Gandevia, S. C. (2005). Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. J Neurophysiol, 94(3), 1699-1706.
    Cordova, M., & Ingersoll, C. (2003). Peroneus longus stretch reflex amplitude increases after ankle brace application. British journal of sports medicine, 37(3), 258-262.
    Cordova, M., Ingersoll, C., & LeBlanc, M. (2000). Influence of ankle support on joint range of motion before and after exercise: a meta-analysis. The Journal of orthopaedic and sports physical therapy, 30(4), 170-177; discussion 178-182.
    Cordova, M. L. (2003). Peroneus longus stretch reflex amplitude increases after ankle brace application. Br J Sports Med, 37(>3), 258-262. doi: 10.1136/bjsm.37.3.258
    Cordova, M. L. (2005). Effects of ankle support on lower-extremity functional performance: a meta-analysis. Med Sci Sports Exerc, 37(4), 635.
    da Fonseca, S. T., Vaz, D. V., de Aquino, C. F., & Brício, R. S. (2006). Muscular co-contraction during walking and landing from a jump: comparison between genders and influence of activity level. Journal of Electromyography and Kinesiology, 16(3), 273-280.
    Delahunt, E., Monaghan, K., & Caulfield, B. (2006). Changes in lower limb kinematics, kinetics, and muscle activity in subjects with functional instability of the ankle joint during a single leg drop jump. Journal of orthopaedic research, 24(10), 1991-2000.
    Delahunt, E., O'Driscoll, J., & Moran, K. (2009). Effects of taping and exercise on ankle joint movement in subjects with chronic ankle instability: a preliminary investigation. Arch Phys Med Rehabil, 90(8), 1418-1422.
    Doherty, C., Delahunt, E., Caulfield, B., Hertel, J., Ryan, J., & Bleakley, C. (2014). The incidence and prevalence of ankle sprain injury: a systematic review and meta-analysis of prospective epidemiological studies. Sports Medicine, 44(1), 123-140.
    Falconer, K., & Winter, D. (1984). Quantitative assessment of co-contraction at the ankle joint in walking. Electromyography and clinical neurophysiology, 25(2-3), 135-149.
    Feger, M. A., Donovan, L., Hart, J. M., & Hertel, J. (2014). Lower extremity muscle activation during functional exercises in patients with and without chronic ankle instability. PM&R, 6(7), 602-611.
    Ferkel, R. D., Karzel, R. P., Del Pizzo, W., Friedman, M. J., & Fischer, S. P. (1991). Arthroscopic treatment of anterolateral impingement of the ankle. Am J Sports Med, 19(5), 440-446.
    Fong, D. T., Chan, Y.-Y., Mok, K.-M., Yung, P. S., & Chan, K.-M. (2009). Understanding acute ankle ligamentous sprain injury in sports. BMC Sports Science, Medicine and Rehabilitation, 1(1), 14.
    Freeman, M., Dean, M., & Hanham, I. (1965). The etiology and prevention of functional instability of the foot. Journal of Bone & Joint Surgery, British Volume, 47(4), 678-685.
    Freyler, K., Weltin, E., Gollhofer, A., & Ritzmann, R. (2014). Improved postural control in response to a 4-week balance training with partially unloaded bodyweight. Gait & posture, 40(2), 291-296.
    Fu, W., Liu, Y., & Zhang, S. (2013). Effects of footwear on impact forces and soft tissue vibrations during drop jumps and unanticipated drop landings. International journal of sports medicine, 34(06), 477-483.
    Gabbett, T. J. (2000). Incidence, site, and nature of injuries in amateur rugby league over three consecutive seasons. Br J Sports Med, 34(2), 98-103. doi: 10.1136/bjsm.34.2.98
    Garrick, J. G. (1977). The frequency of injury, mechanism of injury, and epidemiology of ankle sprains*. The American journal of sports medicine, 5(6), 241-242.
    Girard, O., & Millet, G. P. (2009). Neuromuscular fatigue in racquet sports. Physical medicine and rehabilitation clinics of North America, 20(1), 161-173.
    Gribble, P. A. (2004). The effects of fatigue and chronic ankle instability on dynamic postural control. J Athl Train, 39(4), 321.
    Gribble, P. A., Delahunt, E., Bleakley, C., Caulfield, B., Docherty, C., Fourchet, F., . . . Kaminski, T. (2013). Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium. Br J Sports Med, bjsports-2013-093175.
    Gribble, P. A., & Hertel, J. (2004). Effect of lower-extremity muscle fatigue on postural control. Arch Phys Med Rehabil, 85(4), 589-592.
    Gribble, P. A., Hertel, J., Denegar, C. R., & Buckley, W. E. (2004). The effects of fatigue and chronic ankle instability on dynamic postural control. Journal of athletic training, 39(4), 321.
    Gribble, P. A., Taylor, B. L., & Shinohara, J. (2010). Bracing does not improve dynamic stability in chronic ankle instability subjects. Physical Therapy in Sport, 11(1), 3-7.
    Hagberg, M. (1981). Electromyographic signs of shoulder muscular fatigue in two elevated arm positions. American Journal of Physical Medicine & Rehabilitation, 60(3), 111-121.
    HÄkkinen, K., & Komi, P. V. (1986). Effects of fatigue and recovery on electromyographic and isometric force-and relaxation-time characteristics of human skeletal muscle. European Journal of Applied Physiology and Occupational Physiology, 55(6), 588-596.
    Hansen, H., Damholt, V., & Termansen, N. (1979). Clinical and Social Status Following Injury to the Lateral Ligaments of the Ankle Follow-up of 144 Patients Treated Conservatively. Acta Orthopaedica, 50(6), 699-704.
    Hertel, J. (2000). Functional instability following lateral ankle sprain. Sports Medicine, 29(5), 361-371.
    Hertel, J. (2002). Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. J Athl Train, 37(4), 364.
    Hiller, C. E., Refshauge, K. M., Bundy, A. C., Herbert, R. D., & Kilbreath, S. L. (2006). The Cumberland ankle instability tool: a report of validity and reliability testing. Archives of physical medicine and rehabilitation, 87(9), 1235-1241.
    Hoch, M. C., Farwell, K. E., Gaven, S. L., & Weinhandl, J. T. (2015). Weight-Bearing Dorsiflexion Range of Motion and Landing Biomechanics in Individuals With Chronic Ankle Instability. J Athl Train, 50(8), 833-839.
    Hoch, M. C., Staton, G. S., McKeon, J. M. M., Mattacola, C. G., & McKeon, P. O. (2012). Dorsiflexion and dynamic postural control deficits are present in those with chronic ankle instability. Journal of Science and Medicine in Sport, 15(6), 574-579.
    Hopkins, J. T., Brown, T. N., Christensen, L., & Palmieri‐Smith, R. M. (2009). Deficits in peroneal latency and electromechanical delay in patients with functional ankle instability. Journal of Orthopaedic Research, 27(12), 1541-1546.
    Hopkins, J. T., McLoda, T., & McCaw, S. (2007). Muscle activation following sudden ankle inversion during standing and walking. European Journal of Applied Physiology, 99(4), 371-378.
    Hubbard, T. J., & Cordova, M. (2009). Mechanical instability after an acute lateral ankle sprain. Archives of physical medicine and rehabilitation, 90(7), 1142-1146.
    Karlsson, J., & Andreasson, G. O. (1992). The effect of external ankle support in chronic lateral ankle joint instability an electromyographic study. The American journal of sports medicine, 20(3), 257-261.
    Kellis, E., Arabatzi, F., & Papadopoulos, C. (2003). Muscle co-activation around the knee in drop jumping using the co-contraction index. Journal of Electromyography and Kinesiology, 13(3), 229-238.
    Kodesh, E., & Dar, G. (2015). The effect of kinesiotape on dynamic balance following muscle fatigue in individuals with chronic ankle instability. Research in Sports Medicine(ahead-of-print), 1-12.
    Konradsen, L., & Ravn, J. B. (1990). Ankle instability caused by prolonged peroneal reaction time. Acta Orthopaedica, 61(5), 388-390.
    Konradsen, L., & Ravn, J. B. (1991). Prolonged peroneal reaction time in ankle instability. International journal of sports medicine, 12(03), 290-292.
    Krosshaug, T., Nakamae, A., Boden, B. P., Engebretsen, L., Smith, G., Slauterbeck, J. R., . . . Bahr, R. (2007). Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med, 35(3), 359-367. doi: 10.1177/0363546506293899
    Kunzler, M. R., Lopes, L. M., Ueda, L. S., de Britto, M. A., & Carpes, F. P. (2013). Does skin stimulation compensate impairments in postural control after ankle plantar flexors fatigue? Gait Posture, 37(4), 611-614.
    Lee, H.-J., & Chou, L.-S. (2006). Detection of gait instability using the center of mass and center of pressure inclination angles. Arch Phys Med Rehabil, 87(4), 569-575.
    Lentell, G., Baas, B., Lopez, D., McGuire, L., Sarrels, M., & Snyder, P. (1995). The contributions of proprioceptive deficits, muscle function, and anatomic laxity to functional instability of the ankle. J Orthop Sports Phys Ther, 21(4), 206-215. doi: 10.2519/jospt.1995.21.4.206
    Lin, C.-F., Chen, C.-Y., & Lin, C.-W. (2011). Dynamic ankle control in athletes with ankle instability during sports maneuvers. Am J Sports Med, 39(9), 2007-2015.
    Liu, H., Wu, W., Yao, W., Spang, J. T., Creighton, R. A., Garrett, W. E., & Yu, B. (2014). Effects of knee extension constraint training on knee flexion angle and peak impact ground-reaction force. Am J Sports Med, 42(4), 979-986. doi: 10.1177/0363546513519323
    Liu, W., Siegler, S., & Techner, L. (2001). Quantitative measurement of ankle passive flexibility using an arthrometer on sprained ankles. Clinical Biomechanics, 16(3), 237-244.
    Lynch, S. A., Eklund, U., Gottlieb, D., Renstrom, P. A., & Beynnon, B. (1996). Electromyographic latency changes in the ankle musculature during inversion moments. Am J Sports Med, 24(3), 362-369.
    Madigan, M. L., & Pidcoe, P. E. (2003). Changes in landing biomechanics during a fatiguing landing activity. Journal of Electromyography and Kinesiology, 13(5), 491-498. doi: http://dx.doi.org/10.1016/S1050-6411(03)00037-3
    McKay, G. D., Goldie, P., Payne, W. R., & Oakes, B. (2001). Ankle injuries in basketball: injury rate and risk factors. Br J Sports Med, 35(2), 103-108.
    McKay, G. D., Goldie, P. A., Payne, W. R., & Oakes, B. W. (2001). Ankle injuries in basketball: injury rate and risk factors. British Journal of Sports Medicine, 35(2), 103-108.
    Melzer, I., Benjuya, N., Kaplanski, J., & Alexander, N. (2009). Association between ankle muscle strength and limit of stability in older adults. Age Ageing., 38(1), 119-123. doi: 10.1093/ageing/afn249
    Mitchell, A., Dyson, R., Hale, T., & Abraham, C. (2008). Biomechanics of Ankle Instability. Part 1. Reaction Time to Simulated Ankle Sprain. Medicine and Science in Sports and Exercise, 40(8), 1515-1521.
    Nagai, K., Yamada, M., Tanaka, B., Uemura, K., Mori, S., Aoyama, T., . . . Tsuboyama, T. (2012). Effects of balance training on muscle coactivation during postural control in older adults: a randomized controlled trial. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, glr252.
    Neptune, R., Zajac, F., & Kautz, S. (2004). Muscle force redistributes segmental power for body progression during walking. Gait & posture, 19(2), 194-205.
    Neptune, R. R., Kautz, S., & Zajac, F. (2001). Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. Journal of biomechanics, 34(11), 1387-1398.
    Neptune, R. R., & Sasaki, K. (2005). Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. Journal of Experimental Biology, 208(5), 799-808.
    Ochsendorf, D. T., Mattacola, C. G., & Arnold, B. L. (2000). Effect of orthotics on postural sway after fatigue of the plantar flexors and dorsiflexors. J Athl Train, 35(1), 26.
    Orishimo, K. F., & Kremenic, I. J. (2006). Effect of fatigue on single-leg hop landing biomechanics. Journal of applied biomechanics, 22(4), 245.
    Palmieri-Smith, R. M., Hopkins, J. T., & Brown, T. N. (2009). Peroneal activation deficits in persons with functional ankle instability. The American journal of sports medicine, 37(5), 982-988.
    Parijat, P., & Lockhart, T. E. (2008). Effects of quadriceps fatigue on the biomechanics of gait and slip propensity. Gait Posture, 28(4), 568-573.
    Perotto, A., & Delagi, E. F. (2005). Anatomical guide for the electromyographer: the limbs and trunk: Charles C Thomas Publisher.
    Peters, J. W., Trevino, S. G., & Renstrom, P. A. (1991). Chronic lateral ankle instability. Foot & ankle international, 12(3), 182-191.
    Pinto, M., Kuhn, J. E., V. H. Greenfield, M. L., & Hawkins, R. J. (1999). Prospective Analysis of Ice Hockey Injuries at the Junior A Level over the Course of One Season. Clinical Journal of Sport Medicine, 9(2), 70-74.
    Renstrom, P., Ljungqvist, A., Arendt, E., Beynnon, B., Fukubayashi, T., Garrett, W., . . . Krosshaug, T. (2008). Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med, 42(6), 394-412.
    Rodacki, A. L. F. (2001). Multi-segment coordination: fatigue effects. Med Sci Sports Exerc, 33(7), 1157.
    Rosen, A., Swanik, C., Thomas, S., Glutting, J., Knight, C., & Kaminski, T. W. (2013). Differences in Lateral Drop Jumps From an Unknown Height Among Individuals With Functional Ankle Instability. J Athl Train, 48(6), 773.
    Ross, S., Guskiewicz, K., Gross, M., & Yu, B. (2009). Balance measures for discriminating between functionally unstable and stable ankles. Medicine+ Science in Sports+ Exercise, 41(2), 399.
    Ross, S. E., & Guskiewicz, K. M. (2004). Examination of static and dynamic postural stability in individuals with functionally stable and unstable ankles. Clinical Journal of Sport Medicine, 14(6), 332-338.
    Rowley, K. M., & Richards, J. G. (2015). Increasing plantarflexion angle during landing reduces vertical ground reaction forces, loading rates and the hip’s contribution to support moment within participants. Journal of sports sciences(ahead-of-print), 1-10.
    Salci, Y., Kentel, B. B., Heycan, C., Akin, S., & Korkusuz, F. (2004). Comparison of landing maneuvers between male and female college volleyball players. Clinical Biomechanics, 19(6), 622-628.
    Scholten, S. D., Stergiou, N., Hreljac, A., Houser, J., Blanke, D., & Alberts, L. R. (2002). Foot strike patterns after obstacle clearance during running. Med Sci Sports Exerc, 34(1), 123-129.
    Shaw, M. Y., Gribble, P. A., & Frye, J. L. (2008). Ankle bracing, fatigue, and time to stabilization in collegiate volleyball athletes. J Athl Train, 43(2), 164.
    Shields, C. A., Needle, A. R., Rose, W. C., Swanik, C. B., & Kaminski, T. W. (2013). Effect of elastic taping on postural control deficits in subjects with healthy ankles, copers, and individuals with functional ankle instability. Foot & ankle international, 1071100713491076.
    Silvers, H. J., & Mandelbaum, B. R. (2007). Prevention of anterior cruciate ligament injury in the female athlete. Br J Sports Med, 41 Suppl 1, i52-59. doi: 10.1136/bjsm.2007.037200
    Simon, J., Garcia, W., & Docherty, C. L. (2013). The Effect of Kinesio Tape on Force Sense in People With Functional Ankle Instability. Clinical journal of sport medicine : official journal of the Canadian Academy of Sport Medicine.
    Simpson, K. J., Yom, J. P., Fu, Y.-C., Arnett, S. W., O’Rourke, S., & Brown, C. N. (2013). Does wearing a prophylactic ankle brace during drop landings affect lower extremity kinematics and ground reaction forces? Journal of Applied Biomechanics, 29(2), 205-213.
    Sitler, M. R., & Horodyski, M. B. (1995). Effectiveness of prophylactic ankle stabilisers for prevention of ankle injuries. Sports Medicine, 20(1), 53-57.
    Smith, R. W., & Reischl, S. F. (1986). Treatment of ankle sprains in young athletes. The American journal of sports medicine, 14(6), 465-471.
    Suda, E. Y., Amorim, C. F., & de Camargo Neves Sacco, I. (2009). Influence of ankle functional instability on the ankle electromyography during landing after volleyball blocking. Journal of Electromyography and Kinesiology, 19(2), e84-e93.
    Thedon, T., Mandrick, K., Foissac, M., Mottet, D., & Perrey, S. (2011). Degraded postural performance after muscle fatigue can be compensated by skin stimulation. Gait Posture, 33(4), 686-689.
    Thomasson, M. L., & Comfort, P. (2012). Occurrence of fatigue during sets of static squat jumps performed at a variety of loads. J Strength Cond Res., 26(3), 677-683. doi: 10.1519/JSC.0b013e31822a61b5
    Tropp, H., Ekstrand, J., & Gillquist, J. (1983). Stabilometry in functional instability of the ankle and its value in predicting injury. Medicine and Science in Sports and Exercise, 16(1), 64-66.
    Tropp, H., Odenrick, P., & Gillquist, J. (1985). Stabilometry recordings in functional and mechanical instability of the ankle joint. International journal of sports medicine, 6(03), 180-182.
    Wikstrom, E., Tillman, M., Schenker, S., & Borsa, P. (2008). Failed jump landing trials: deficits in neuromuscular control. Scandinavian journal of medicine & science in sports, 18(1), 55-61.
    Wikstrom, E. A., Arrigenna, M. A., Tillman, M. D., & Borsa, P. A. (2006). Dynamic postural stability in subjects with braced, functionally unstable ankles. J Athl Train, 41(3), 245.
    Wikstrom, E. A., Bishop, M. D., Inamdar, A. D., & Hass, C. J. (2010). Gait termination control strategies are altered in chronic ankle instability subjects. Med Sci Sports Exerc, 42(1), 197-205.
    Wikstrom, E. A., Tillman, M. D., & Borsa, P. A. (2005). Detection of dynamic stability deficits in subjects with functional ankle instability. Med Sci Sports Exerc, 37(2), 169-175.
    Wikstrom, E. A., Tillman, M. D., Chmielewski, T. L., Cauraugh, J. H., & Borsa, P. A. (2007). Dynamic postural stability deficits in subjects with self-reported ankle instability. Medicine and Science in Sports and Exercise, 39(3), 397.
    Wilkerson, G. B., Pinerola, J. J., & Caturano, R. W. (1997). Invertor vs. evertor peak torque and power deficiencies associated with lateral ankle ligament injury. Journal of Orthopaedic & Sports Physical Therapy, 26(2), 78-86.
    Wilson, B., & Bialocerkowski, A. (2015). The Effects of Kinesiotape Applied to the Lateral Aspect of the Ankle: Relevance to Ankle Sprains–A Systematic Review. PloS One, 10(6).
    Woods, C., Hawkins, R., Hulse, M., & Hodson, A. (2003). The Football Association Medical Research Programme: an audit of injuries in professional football: an analysis of ankle sprains. Br J Sports Med, 37(3), 233-238.
    Yaggie, J. A., & McGregor, S. J. (2002). Effects of isokinetic ankle fatigue on the maintenance of balance and postural limits. Arch Phys Med Rehabil, 83(2), 224-228.
    Yeung, M., Chan, K.-M., So, C., & Yuan, W. (1994). An epidemiological survey on ankle sprain. British journal of sports medicine, 28(2), 112-116.
    Zadpoor, A. A., & Nikooyan, A. A. (2011). The relationship between lower-extremity stress fractures and the ground reaction force: a systematic review. Clinical Biomechanics, 26(1), 23-28.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE