| 研究生: |
鄭程維 Cheng, Cheng-Wei |
|---|---|
| 論文名稱: |
最小化扭矩漣漪之葉片式氣動馬達設計 Modeling and Design of Air Vane Motors for Minimal Torque Ripples |
| 指導教授: |
藍兆杰
Lan, Chao-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 扭矩漣漪 、轉速漣漪 、定扭力 、葉片式氣動馬達 |
| 外文關鍵詞: | Torque ripple, speed ripple, constant torque, vane-type air motor |
| 相關次數: | 點閱:121 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種新型葉片式氣動馬達的理論分析與設計方法,改善馬達的轉速漣漪。氣動馬達具有機構簡單與高比功率等優點,並使用壓縮空氣驅動馬達,因此可應用在具有高揮發性氣體的化學工廠中,避免產生火花,防止爆炸,同時氣動馬達內部壓力大於外部壓力,因此可在惡劣髒污的環境中使用。氣動馬達與其他旋轉機械一樣,它們都存在著輸出扭矩振盪的問題,造成這個現象的主要原因,是由於一個週期內各個葉片的輸出扭矩不能互相配合,導致總輸出扭矩產生振盪。為了解決這個問題,我們提出一個新型的定子輪廓設計方法,改善馬達的輸出扭矩,使馬達具有穩定的輸出,新型定子採用非對稱進排氣口與非圓形輪廓,並透過最佳化方法設計單雙向馬達,最佳化的新型馬達在扭矩漣漪上有顯著的改善,也可藉由設定一個較高且合理的膨脹比,使氣動馬達具有較高的輸出扭矩與機械效率,並使用一次一因子方法(one-factor-at-a-time),討論製造誤差與裝配誤差對扭矩漣漪的影響。為了驗證新型馬達的可行性,藉由線切割、放電加工與研磨等方法製造定子,進行實作與實驗。最後,期望本論文設計的新型定子輪廓可以應用在任何尺寸的葉片式氣動馬達上,使氣動馬達具有更穩定的輸出。
This paper presents the analysis and design of a novel air vane motor. Air motors produce very high specific power. They require compressed air rather than electricity; thus avoid sparks and can be used in demanding environments. Same as other types of rotary machines, air vane motors exhibit torque fluctuations. The varying torque curve is a result of unmatched torques generated by the vanes in one revolution. Torque fluctuations produce dynamic speed ripples that further introduce undesirable vibration. Rather than using auxiliary flywheels to smoothen the fluctuation, we propose a new stator configuration that can help produce a nearly constant output torque. The stator adopts asymmetric inlet/outlet positions and a noncircular inner profile. Through numerical optimizations of the noncircular profile, the torque fluctuation and speed ripples are greatly reduced, when compared with traditional air vane motors with circular stator profiles. Meanwhile, the air vane motors can be more efficient by setting a reasonably higher expansion ratio. The influences of different parameters on torque fluctuation are also compared by sensitivity analysis. To validate the present designs, two novel air motors are illustrated to show the speed ripples can be successfully reduced. Finally, this thesis expects that the optimized noncircular stator profile can be applied to air vane motors of various sizes to eliminate rotating vibrations.
[1] A. Barber, 1989, Pneumatic Handbook, Trade & Technical Press, Morden, Surrey, England.
[2] T. Royston and R. Singh, 1993, “Development of a Pulse-Width Modulated Pneumatic Rotary Valve for Actuator Position Control,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 115, pp. 495-505.
[3] J. Wang, J. Pu, and P. R. Moore, 1999, “A Practical Control Strategy for Servo-Pneumatic Actuator Systems,” Control engineering practice, Vol. 7, No. 12, pp. 1483-1488.
[4] T. Vesselenyi, S. Dzitac, I. Dzitac, and M. Manolescu, 2007, “Fuzzy and Neural Controllers for a Pneumatic Actuator,” International Journal of Computers, Communications & Control, Vol. 2, No. 4, pp. 375-387.
[5] M. Sorli, L. Gastaldi, E. Codina, and S. de las Heras, 1999, “Dynamic Analysis of Pneumatic Actuators,” Simulation Practice and Theory, Vol. 7, No. 5-6, pp. 589-602.
[6] E. Richer and Y. Hurmuzlu, 2000, “A High Performance Pneumatic Force Actuator System: Part I- Nonlinear Mathematical Model,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 122, No. 3, pp. 416-425.
[7] E. Richer and Y. Hurmuzlu, 2000, “A High Performance Pneumatic Force Actuator System: Part II- Nonlinear Controller Design,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 122, No. 3, pp. 426-434.
[8] J. Pu, P. R. Moore, and R. H. Weston, 1991, “Digital Servo Motion Control of Air Motors,” International Journal of Production Research, Vol. 29, No. 3, pp. 599-618.
[9] J. Wang, J. Pu, P. R. Moore, and Z. Zhang, 1998, “Modelling Study and Servo-Control of Air Motor Systems,” International Journal of Control, Vol. 71, No. 3, pp. 459-476.
[10] S. R. Pandian, F. Takemura, Y. Hayakawa, and S. Kawamura, 1999, “Control Performance of an Air Motor-Can Air Motors Replace Electric Motors ?,” International Conference on Robotics & Automation, Detroit, Michigan, pp. 518-524.
[11] X. Luo, J. Wang, L. Shpanin, N. Jia, G. Liu, and A. S. I. Zinober, 2008, “Development of a Mathematical Model for Vane-Type Air Motors with Arbitrary N Vanes,” Lecture Notes in Engineering and Computer Science, Vol. 2170, No.1, pp. 362-367.
[12] Y. Zhang and A. Nishi, 2003, “Low-Pressure Air Motor for Wall-Climbing Robot Actuation,” Mechatronics, Vol. 13, No. 4, pp. 377-392.
[13] K. Suzumori, K. Hori, and T. Miyagawa, 1998, “A Direct-Drive Pneumatic Stepping Motor for Robots: Designs for Pipe-Inspection Microrobots and for Human-Care Robots,” International Conference on Robotics & Automation, Leuven, Belgium, Vol. 4, pp. 3047-3052.
[14] D. Stoianovici, A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi, 2007, “A New Type of Motor: Pneumatic Step Motor,” IEEE/ASME Transactions on Mechatronics, Vol. 12, No.1, pp. 98-106.
[15] Y. T. Shen and Y. R. Hwang, 2008, “Design and Implementation of an Air-Powered Motorcycles,” Applied Energy, Vol. 86, No. 7-8, pp. 1105-1110.
[16] P. Fairley, 2009, “Driving on Air”, IEEE Spectrum, Vol. 46, No. 11, pp. 30-35.
[17] S. Y. Chung, 2005, Optimum Design of a Rotary Compressor with Controlled Sliding Vane, Master Thesis, National Taiwan University of Taiwan.
[18] K. T. Ooi and T. N. Tong, 1997, “A Computer Simulation of a Rotary Compressor for Household Refrigerators,” Applied Thermal Engineering, Vol. 17, No. 1, pp. 65-78.
[19] K. T. Ooi, 2005, “Design Optimization of a Rolling Piston Compressor for Refrigerators,” Applied Thermal Engineering, Vol. 25, No. 5-6, pp. 813-829.
[20] K. T. Ooi and H. Q. Lee, 2008, “Multi-Objective Design Optimization of a Rotary Compressor for household Air-Conditioning,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 222, No. 4, pp. 241-250.
[21] G. Prater Jr., 2002, “Computer Modeling and Simulation of Stationary-Vane, Rolling Piston Refrigeration Compressors,” Computer Modeling in Engineering & Sciences, Vol. 3, No. 3, pp. 299-312.
[22] Y. C. Park, 2010, “Transient Analysis of a Variable Speed Rotary Compressor,” Energy Conversion and Management, Vol. 51. No. 2, pp. 277-287.
[23] Y. M. Huang and Y. F. Chiou, 1998, “Performance and Dynamics of a Rotary Compressor with a Composite Stator Inner Contour,” ASME FEDSM 98-4856, Washington, D.C., pp. 1-8.
[24] Y. M. Huang and S. A. Yang, 2008, “A Measurement Method for Air Pressures in Compressor Vane Segments,” Measurement, Vol. 41, No. 8, pp. 835-841.
[25] Y. M. Huang and S. N. Tsay, 2009, “Mechanical Efficiency Optimization of a Sliding Vane Rotary Compressor,” Journal of Pressure Vessel Technology, Vol. 131, No. 6, pp. 1-8.
[26] Y. Chen, N. P. Halm, E. A. Groll, and J. E. Braun, 2002, “Mathematical Modeling of Scroll Compressors-Part I Compression Process Modeling,” International Journal of Refrigeration, Vol. 25, No. 6, pp. 731-750.
[27] Y. Chen, N. P. Halm, J. E. Braun, and E. A. Groll, 2002, “Mathematical Modeling of Scroll Compressors-Part II Overall Scroll Compressor Modeling,” International Journal of Refrigeration, Vol. 25, No. 6, pp. 751-764.
[28] K. T. Ooi and J. Zhu, 2004, “Convective Heat Transfer in a Scroll Compressor Chamber: A 2-D Simulation,” International Journal of Thermal Sciences, Vol. 43, No. 7, pp. 677-688.
[29] K. Jang and S. Jeong, 2006, “Experimental Investigation on Convective Heat Transfer Mechanism in a Scroll Compressor,” International Journal of Refrigeration, Vol. 29, No. 5, pp. 744-753.
[30] C. H. Tseng and Y. C. Chang, 2006, “Family Design of Scroll Compressors with Optimization,” Applied Thermal Engineering, Vol. 26, No. 10, pp. 1074-1086.
[31] Y. Liu, C. Hung, and Y. Chang, 2009, “Design Optimization of Scroll Compressor Applied for Frictional Losses Evaluation,” International Journal of Refrigeration, Vol. 33, No. 3, pp. 615-624.
[32] Y. G. Liu, C. H. Hung, and Y. C. Chang, 2009, “Mathematical Model of Bypass Behaviors Used in Scroll Compressor,” Applied Thermal Engineering, Vol. 29, No. 5-6, pp. 1058-1066.
[33] Y. L. Teh and K. T. Ooi, 2008, “Theoretical Study of a Novel Refrigeration Compressor-Part I: Design of the Revolving Vane (RV) Compressor and Its Frictional Losses,” International Journal of Refrigeration, Vol. 32, No. 5, pp. 1092-1102.
[34] Y. L. Teh, K. T. Ooi, and D. W. Djamari, 2008, “Theoretical Study of a Novel Refrigeration Compressor-Part II: Performance of a Rotating Discharge Valve in the Revolving Vane (RV) Compressor,” International Journal of Refrigeration, Vol. 32, No. 5, pp. 1103-1111.
[35] Y. L. Teh and K. T. Ooi, 2009, “Theoretical Study of a Novel Refrigeration Compressor-Part III: Leakage Loss of the Revolving Vane (RV) Compressor and a Comparison with That of the Rolling Piston Type,” International Journal of Refrigeration, Vol. 32, No. 5, pp. 945-952.
[36] Y. L. Teh and K. T. Ooi, 2009, “Experimental Study of the Revolving Vane (RV) Compressor,” Applied Thermal Engineering, Vol. 29, No. 14-15, pp. 3235-3245.
[37] H. Zhou, Z. Qu, H. Yang, and B. Yu, 2009, “Dynamic Model and Numerical Simulation for Synchronal Rotary Compressor,” Journal of Fluids Engineering, Vol. 131, No. 4, pp. 1-9.
[38] K. T. Ooi, 2004, “Simulation of a Piezo-Compressor,” Applied Thermal Engineering, Vol. 24, No. 4, pp. 549-562.
[39] I. Husain and M. Ehsani, 1996, “Torque Ripple Minimization in Switched Reluctance Motor Drives by PWM Current Control,” IEEE Transactions on Power Electronics, Vol. 11, No. 1, pp. 83-88.
[40] Y. S. Lai and J. H. Chen, 2001, “A New Approach to Direct Torque Control of Induction Motor Drives for Constant Inverter Switching Frequency and Torque Ripple Reduction,” IEEE Transactions on Energy Conversion, Vol. 16, No. 3, pp. 220-227.
[41] K. T. Chau, Q. Sun, Y. Fan, and M. Cheng, 2005, “Torque Ripple Minimization of Doubly Salient Permanent-Magnet Motors,” IEEE Transactions on Energy Conversion, Vol. 20, No. 2, pp. 352-358.
[42] A. Saltelli, K. Chan, and E. M. Scott, 2001, Sensitivity Analysis, John Wiley & Sons, West Sussex, England.
[43] I. Dincer and M. Kanoglu, 2010, Refrigeration Systems and Applications, John Wiley & Sons, West Sussex, England.
[44] Yahooo Aircondition Automobile Serviec, 2010, “The Types of Compressor,” Available: http://74.220.215.201/~yahoooco/product_2.html.
[45] Gast, 2010, “Gast Homepage”, Available: http://www.gastmfg.com/index.html.