簡易檢索 / 詳目顯示

研究生: 陳忠胜
Sutanto, Hermawan
論文名稱: 回收雲點萃取多苯環化合物後之非離子界面活性劑
Recovery of Nonionic Surfactant after Cloud Point Extraction of Polycyclic Aromatic Hydrocarbons
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 91
外文關鍵詞: cloud-point extraction (CPE), polycyclic aromatic hydrocarbons (PAHs), nonionic surfactant, solvent extraction, alcohols, adsorption.
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Cloud point extraction (CPE) has been applied successfully to remove the 9 compounds of polycyclic aromatic hydrocarbons (PAHs) by using nonionic surfactant Tergitol 15-S-7 as separating agent. Possibly, the CPE method may be applied in treating wastewater containing PAHs pollutants. In Addition, in order to make the process more economical and efficient, the surfactant in the surfactant rich phase should be recycled and reused.
    Solvent extraction and adsorption using activated carbon were used to separate the surfactant rich phase into surfactant and PAHs. In our work, alcohols like 1-hexanol, 1-octanol, 1-decanol, and 1-dodecanol were used as a solvent to extract PAHs in surfactant rich phase and recycle the fresher surfactants. Besides alcohols, solvent like ethyl acetate also being used. Activated charcoal with 100-400 mesh and 4-8 mesh sizes were used to separate the nine PAHs and nonionic surfactant from the surfactant rich phase.
    The results show that alcohols can be used to extract PAHs from the surfactant rich phase well. It is indicated from almost no PAHs detected in the lower phase after solvent extraction. And for surfactant, only about 22% of surfactant can be recovered from the surfactant rich phase after the solvent extraction process. Besides solvent extraction, adsorption using activated carbon for recovering the surfactant also can be done to separate the nine PAHs from surfactant rich phase and recover the fresher surfactant. By using this method, the surfactant recovery is above 90%.

    Abstract…………………………………………………………………………………. i Acknowledgement ……………………………………………………………………… ii List of Contents …………………………………………………………………………. iii List of Tables ……………………………………………………………………………. vi List of Figures ……………………………………………………………………………vii Chapter 1 Introduction ………………………………………………………………... 1 1.1. Research background …………………………………………………. 1 1.2. Objectives ……………………………………………………………... 4 Chapter 2 Literature Review ………………………………………………………….. 8 2.1. Polycyclic aromatic hydrocarbons (PAHs) …………………………... 8 2.2. Surfactant …………………………………………………………….. 10 2.2.1. Types of surfactant ……………………………………………. 11 2.2.2. Synthesis of alcohol and phenol ethoxylated …………………. 12 2.2.2.1. Alcohol ethoxylates ………………………………….. 12 2.2.2.2. Alkylphenol ethoxylates ……………………………... 15 2.2.3. Physical properties of nonionic surfactant ……………………. 16 2.2.3.1. Solubility characteristics …………………………….. 17 2.2.3.2. Cloud point …………………………………………... 17 2.2.3.3. Wetting ………………………………………………. 18 2.2.3.4. Foaming ……………………………………………… 18 2.2.3.5. Biodegradation ………………………………………. 19 2.2.3.6. Applications …………………………………………. 19 2.2.4. Analysis of alcohols ethoxylated ……………………………... 20 2.2.5. Surfactant phase structure …………………………………….. 21 2.3. Extraction technique …………………………………………………. 23 iv 2.3.1. Extraction for solid samples ………………………………….. 23 2.3.2. Extraction for liquid samples ………………………………… 26 2.4. Cloud point extraction ………………………………………………. 28 2.4.1. Optimization of cloud point extraction ……………………….. 30 2.4.2. Analytical determinations …………………………………….. 32 2.5. Separation by inter-phase mass transfer ……………………………... 32 2.5.1. Solvent extraction for removing low-volatility organic compounds …………………………………………………..... 35 2.6. Adsorption by activated carbons …………………………………….. 36 2.6.1. Adsorption from dilute solutions ……………………………... 38 2.6.2. Factors controlling the adsorption process …………………… 40 2.6.2.1. Characteristics of the adsorbent ……………………... 40 2.6.2.2. Characteristics of the adsorptive ……………………. 42 2.6.2.3. Solution chemistry and adsorption temperature ……. 42 Chapter 3 Experimental ……………………………………………………………... 43 3.1. Framework of the experiment ………………………………………. 43 3.2. Materials …………………………………………………………….. 44 3.2.1 Polycyclic aromatic hydrocarbons (PAHs) compounds ……... 44 3.2.2 Surfactant …………………………………………………….. 45 3.2.3 Other materials ……………………………………………….. 45 3.3. Experimental instrument ……………………………………………. 46 3.4. Experimental procedures ……………………………………………. 48 3.4.1. Cloud point extraction ……………………………………….. 48 3.4.2. Solvent extraction ……………………………………………. 48 3.4.3. Adsorption using activated carbon …………………………... 48 3.4.4. Analytical procedure ………………………………………… 49 3.5. Data analysis ………………………………………………………... 50 3.5.1. Limit of detection (LOD) ……………………………………. 50 3.5.2. Preconcentration factor (fc) ………………………………….. 51 v 3.5.3. PAHs recovery ………………………………………………. 51 3.5.4. PAHs removal ……………………………………………….. 51 3.5.5. Surfactant recovery ………………………………………….. 52 Chapter 4 Results and Discussion ………………………………………………….. 54 4.1. Determination of polycyclic aromatic hydrocarbons (PAHs) by HPLC ……………………………………………………………. 54 4.1.1. HPLC UV/Vis detector analysis ……………………………... 54 4.1.2. Calibration curve using UV/Vis detector ……………………. 56 4.1.3. HPLC Fluorescence detector analysis ……………………….. 62 4.1.4. Calibration curve using Fluorescence detector ………………. 66 4.2. Cloud point extraction and preconcentration factor ……………….... 71 4.3. Solvent extraction ………………………………………………….... 73 4.3.1. Effect of initial PAHs concentration …………………………. 73 4.3.2. Effect of alcohols as extractants ……………………………… 76 4.4. Adsorption using activated carbon ………………………………….. 78 4.4.1. Effect of activated carbon dose ………………………………. 79 4.4.2. Effect of particle size of activated carbon ……………………. 81 4.4.3. Effect of contact time ………………………………………… 83 Chapter 5 Conclusion .………………………………………………………………. 85 References ……………………………………………………………………………... 86

    [1] Tsai, P.J., et al., "Health-risk assessment for workers exposed to polycyclic aromatic hydrocarbons (PAHs) in a carbon black manufacturing industry", Sci. Total Environment, 278(1-3), p. 137-150, (2001).
    [2] U.S. Environmental Protection Agency. “Integrated Risk Information System (IRIS) on Polycyclic Organic Matter”, National Center for Environmental Assessment, Office of Research and Development: Washington, DC, (1999).
    [3] Council of European Communities, Directive 75/440/EEC, Off. J. Eur. Commun., L194, p. 26, (1975).
    [4] Council of European Communities, Directive 79/869/EEC, Off. J. Eur. Commun., L271, p. 44, (1979).
    [5] Council of European Communities, Directive 80/778/EEC, Off. J. Eur. Commun., L229, p. 11, (1980).
    [6] Kicinski, H.G., S. Adamek, and A. Kettrup, "Solid-Phase Extraction and HPLC-Analysis of Polycyclic Aromatic-Hydrocarbons in Water, Soil and Oil", Fresenius Zeitschrift Fur Analytische Chemie, 334(7), p. 667-667, (1989).
    [7] Villaizan, M., J.S. Lozano, and M.A.L. Yusty, "Determination of Polycyclic Aromatic-Hydrocarbons in Drinking and Surface Waters From Galicia (NW SPAIN) by Constant-Wavelength Synchronous Spectrofluorometry", Talanta, 42(7), p. 967-970, (1995).
    [8] L.A. Robbins, “Liquid–liquid extraction, in: R.H. Perry, D. Green (Eds.), Perry’s Chemical Engineering Handbook, sixth ed. (Chapter 15)”, McGraw-Hill, New York, (1984).
    [9] Casero, I., et al., "An acid-induced phase cloud point separation approach using anionic surfactants for the extraction and preconcentration of organic compounds", Anal. Chem., 71(20), p. 4519-4526, (1999).
    [10] Bai, D.S., et al., "A novel cloud-point extraction process for preconcentrating selected polycyclic aromatic hydrocarbons in aqueous solution", Environ. Sci. Technol., 35(19), p. 3936-3940, (2001).
    [11] Schott, H., "Hydrophile-Lipophile Balance and Cloud Points of Nonionic Surfactants, J. Pharm. Sci., 58(12), p. 1443-&, (1969).
    87
    [12] Schott, H., "Effect of inorganic additives on solutions of nonionic surfactants XIV. Effect of chaotropic anions on the cloud point of octoxynol 9 (Triton X-100)", J. Colloid Interface Sci., 189(1), p. 117-122, (1997).
    [13] Koshy, L., A.H. Saiyad, and A.K. Rakshit, "The effects of various foreign substances on the cloud point of Triton X 100 and Triton X 114", Colloid Polym. Sci., 274(6), p. 582-587, (1996).
    [14] Iwanaga, T., M. Suzuki, and H. Kunieda, "Effect of added salts or polyols on the liquid crystalline structures of polyoxyethylene-type nonionic surfactants", Langmuir, 14(20), p. 5775-5781, (1998).
    [15] Miyagishi, S., K. Okada, and T. Asakawa, "Salt effect on critical micelle concentrations of nonionic surfactants, N-acyl-N-methylglucamides (MEGA-n)", J. Colloid Interface Sci., 238(1), p. 91-95, (2001).
    [16] Li, J.L. and B.H. Chen, "Equilibrium partition of polycyclic aromatic hydrocarbons in a cloud-point extraction process", J. Colloid Interface Sci., 263(2), p. 625-632, (2003).
    [17] Li, J.L. and B.H. Chen, "Solubilization of model polycyclic aromatic hydrocarbons by nonionic surfactants", Chem. Eng. Sci., 57(14), p. 2825-2835, (2002).
    [18] Ferrer, R., J.L. Beltran, and J. Guiteras, "Use of cloud point extraction methodology for the determination of PAHs priority pollutants in water samples by high-performance liquid chromatography with fluorescence detection wavelength programming", Analytica Chimica Acta, 330(2-3), p. 188-206, (1996).
    [19] Chen, B.H., C.A. Miller, and P.R. Garrett, "Rates of solubilization of triolein into nonionic surfactant solutions", Colloid Surf. A-Physicochem. Eng. Asp., 128(1-3), p. 129-143, (1997).
    [20] Cheng, H.F. and D.A. Sabatini, "Separation of organic compounds from surfactant solutions: A review", Sep. Sci. Technol., 42(3), p. 453-475, (2007).
    [21] Kungsanant, S., et al., "Recovery of nonionic surfactant from VOC-contaminated coacervate phase solutions by co-current vacuum stripping: Effect of surfactant concentration, temperature, and solute type", Sep. Purif. Technol., 66(3), p. 510-516, (2009).
    88
    [22] Das, C., S. DasGupta, and S. De, "Simultaneous separation of mixture of metal ions and aromatic alcohol using cross flow micellar-enhanced ultrafiltration and recovery of surfactant", Sep. Sci. Technol., 43(1), p. 71-92, (2008).
    [23] Boonyasuwat, S., et al., "Surfactant Recovery from Water Using a Multistage Foam Fractionator: Effect of Surfactant Type", Sep. Sci. Technol., 44(7), p. 1544-1561, (2009).
    [24] Senturk, H.B., et al., "Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study", J. Hazard. Mater., 172(1), p. 353-362, (2009).
    [25] Ahn, C.K., et al., "Selective adsorption of phenanthrene dissolved in surfactant solution using activated carbon", Chemosphere, 69(11), p. 1681-1688, (2007).
    [26] Robson, R.J. and E.A. Dennis, "The Size, Shape, and Hydration of Nonionic Surfactant Micelles - TRITON X-100", J. Phys. Chem., 81(11), p. 1075-1078, (1977).
    [27] Sander, L.C., Wise, S.A., “Polycyclic Aromatic Hydrocarbon Structure Index”, NIST Special Publication, p. 922, (1997).
    [28] Fetzer, J. C., "The Chemistry and Analysis of the Large Polycyclic Aromatic Hydrocarbons", Polycyclic Aromatic Compounds (New York: Wiley) 27: 143, (2000).
    [29] Agency for Toxic Substances and Disease Registry, “Toxicological profile for polycyclic aromatic hydrocarbons (PAHs)”, Atlanta, GA, US Department of Health and Human Services, Public Health Services, (1994).
    [30] Rosen, M.J., “Surfactants and Interfacial Phenomena 2nd ed.”, John Wiley & Sons: New York, (1989).
    [31] McKenzie, D.A., “Nonionic Surfactants”, J. AM. OIL CHEMISTS' SOC., 55, (1978)
    [32] Schmitt, T.M., “Analysis of Surfactants: 2nd edition revised and expanded”, Marcel Dekker: New York, (2001).
    [33] American Society for Testing and Materials, “Ethylene oxide content for polyethoxylated nonionic surfactants, D2959-95”, West Conshohocken, PA 19428, (2009).
    [34] Siggia, S., A.C. Starke, Jr., J.J. Garis, Jr., C.R. Stahl, “Oxalkylene groups in glycols and glycol and polyglycol ethers and esters”, Anal. Chem., 30, 115-116, (1958).
    [35] Siggia, S., J.G. Hanna, “Quantitative Organic Analysis via Functional Groups, 4th ed.”, Robert E. Krieger, Malabar, FL, (1988).
    [36] Ott, A., et al., "Surfactant Self-Diffusion in L3 Phases", Langmuir, 8(2), p. 345-347, (1992).
    89
    [37] Israelachvili, J.N., D.J. Mitchell, and B.W. Ninham, "Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers", Journal of the Chemical Society-Faraday Transactions Ii, 72, p. 1525-1568, (1976).
    [38] Strey, R., et al., "Freeze-Fracture Electron-Microscopy of Dilute Lamellar and Anomalous Isotropic (L3) Phases", Langmuir, 6(11), p. 1635-1639, (1990).
    [39] Tiddy, G.J.T., “Surfactant-Water Liquid Crystal Phases”, North Holland Publishing Company: Amsterdam, (1980).
    [40] Strey, R., "Water-nonionic surfactant systems, and the effect of additives", Ber. Bunsen-Ges. Phys. Chem. Chem. Phys., 100(3), p. 182-189, (1996).
    [41] Ferrera, Z.S., et al., "The use of micellar systems in the extraction and pre-concentration of organic pollutants in environmental samples", Trac-Trends Anal. Chem., 23(7), p. 469-479, (2004).
    [42] Fernandez, P., et al., "Bioassay-Directed Chemical-Analysis of Genotoxic Components in Coastal Sediments", Environ. Sci. Technol., 26(4), p. 817-829, (1992).
    [43] Barnabas, I.J., et al., "Experimental-Design Approach for The Extraction of Polycyclic Aromatic Hydrocarbons from Soil Using Supercritical Carbon-dioxide", Anal. Chem., 67(13), p. 2064-2069, (1995).
    [44] Fisher, J.A., M.J. Scarlett, and A.D. Stott, "Accelerated solvent extraction: An evaluation for screening of soils for selected US EPA semivolatile organic priority pollutants", Environ. Sci. Technol., 31(4), p. 1120-1127, (1997).
    [45] Letellier, M., et al., "Focused microwave-assisted extraction of polycyclic aromatic hydrocarbons and alkanes from sediments and source rocks", Org. Geochem., 30(11), p. 1353-1365, (1999).
    [46] Ferrera, Z.S., et al., "The use of micellar systems in the extraction and pre-concentration of organic pollutants in environmental samples", Trac-Trends Anal. Chem., 23(7), p. 469-479, (2004).
    [47] Chiron, S., A.F. Alba, and D. Barcelo, "Comparison of Online Solid-Phase Disk Extraction to Liquid-Liquid-Extraction for Monitoring Selected Pesticides in Environmental Waters", Environ. Sci. Technol., 27(12), p. 2352-2359, (1993).
    [48] Eisert, R. and J. Pawliszyn, "Automated in-tube solid-phase microextraction coupled to high-performance liquid chromatography", Anal. Chem., 69(16), p. 3140-3147, (1997).
    90
    [49] Saitoh, T. and W.L. Hinze, "Concentration of Hydrophobic Organic-Compounds and Extraction of Protein Using Alkylammoniosulfate Zwitterionic Surfactant Mediated Phase Separations (Cloud Point Extractions)", Anal. Chem., 63(21), p. 2520-2525, (1991).
    [50] West, C.C. and J.H. Harwell, "Surfactants and Subsurface Remediation", Environ. Sci. Technol., 26(12), p. 2324-2330, (1992).
    [51] Shiau, B.J., D.A. Sabatini, and J.H. Harwell, "Solubilization and Microemulsification of Chlorinated Solvents Using Direct Food Additive (Edible) Surfactants", Ground Water, 32(4), p. 561-569, (1994).
    [52] Acosta, E., et al., "Formulating chlorinated hydrocarbon microemulsions using linker molecules", Environ. Sci. Technol., 36(21), p. 4618-4624, (2002).
    [53] Hung, K.C., B.H. Chen, and L.E. Yu, "Cloud-point extraction of selected polycyclic aromatic hydrocarbons by nonionic surfactants", Sep. Purif. Technol., 57(1), p. 1-10, (2007).
    [54] Bercaru, O., et al., "Accurate quantification of PAHs in water in the presence of dissolved humic acids using isotope dilution mass spectrometry", Anal. Bioanal. Chem., 384(5), p. 1207-1213, (2006).
    [55] Frankewich, R.P. and W.L. Hinze, "Evaluation and Optimization of the Factors Affecting Nonionic Surfactant-Mediated Phase Separations", Anal. Chem., 66(7), p. 944-954, (1994).
    [56] Santana, C.M., Z.S. Ferrera, and J.J.S. Rodriguez, "Use of non-ionic surfactant solutions for the extraction and preconcentration of phenolic compounds in water prior to their HPLC-UV detection", Analyst, 127(8), p. 1031-1037, (2002).
    [57] Mahugo Santana, C., Z. Sosa Ferrera, and J.J. Santana Rodriguez, "Extraction and determination of phenolic derivatives in water samples by using polyoxyethylene surfactants and liquid chromatography with photodiode array detection", Journal of AOAC International, 87(1), p. 166-171, (2004).
    [58] Cheng, H.F., D.A. Sabatini, and T.C.G. Kibbey, "Solvent extraction for separating micellar-solubilized contaminants and anionic surfactants", Environ. Sci. Technol., 35(14), p. 2995-3001, (2001).
    [59] Bottani, E.J., J.M.D. Tascon, “Adsorption by Carbons”, Elsevier: Amsterdam, (2008).
    [60] Ahn, C.K., S.H. Woo, and J.M. Park, "Enhanced sorption of phenanthrene on activated carbon in surfactant solution", Carbon, 46(11), p. 1401-1410, (2008).
    91
    [61] Moreno-Castilla, C., "Adsorption of organic molecules from aqueous solutions on carbon materials", Carbon, 42(1), p. 83-94, (2004).
    [62] D.R. Lide (Ed.), “CRC Handbook of Chemistry and Physics, 86th ed.”, CRC Press, Boca Raton, FL, (2005).
    [63] D. Mackay,W.Y. Shiu, “Aqueous solubility of polynuclear aromatic hydrocarbons”, J. Chem. Eng. Data 22, 399–402, (1977).

    下載圖示 校內:2015-07-14公開
    校外:2015-07-14公開
    QR CODE