簡易檢索 / 詳目顯示

研究生: 武康田
Vo Khuong Dien
論文名稱: IV族和III-VI族二維材料的多樣準粒子性質
Diverse Quasiparticle Properties of Group IV and Group III-VI Two-dimensional Materials
指導教授: 林明發
Lin, Ming-Fa
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 147
中文關鍵詞: 二维材料电子特性光学特性
外文關鍵詞: Two-dimensional materials, Electronic properties, Optical properties
ORCID: https://orcid.org/0000-0002-7974-9852
ResearchGate: https://www.researchgate.net/profile/Vo-Khuong-Dien
相關次數: 點閱:92下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二維材料因其特殊的準粒子性質及其在儲能領域的廣泛應用前景而吸引了凝聚態物理、物理化學和材料科學領域的大量研究興趣 、電子、光電和光子器件。
    目前的工作“IV族和III-VI族二維材料的多樣準粒子性質”通過第一性原理計算呈現了大準粒子框架發展下的各種現象。 這項工作考慮了關鍵機制、多/單軌道雜交、自旋配置和自旋軌道耦合。 發達的理論框架負責簡明的物理/化學/材料圖。 對最佳晶格、原子和自旋主導能帶、軌道和亞晶格相關子包絡函數、化學修飾前後的空間電荷分佈、原子軌道- & 自旋投影態密度、自旋密度、磁矩、豐富的光激發和原子振動。 所有一致的數量已成功識別各種化學鍵中的多軌道雜化。 目前準粒子框架的方法可以推動唯像模型的大發展; 此外,預測結果能夠解釋最新的實驗測量結果。
    關鍵詞:二維材料,電子和光學特性

    Two-dimensional materials have attracted lots of research interests in the fields of condensed-matter physics, physical chemistries, and materials sciences due to the nature of their particular quasi-particle properties as well as their promise of a broad range of applications in energy storage, electronic, optoelectronic, and photonic devices.
    The current work, “Diverse quasiparticle properties of group IV and group III-VI two-dimensional materials” presents the diverse phenomena under the development of the grand quasiparticle framework through the first-principles calculations. The critical mechanisms, the orbital hybridizations, spin configurations, and spin-orbit couplings are taken into account in this work. The developed theoretical framework is responsible for concise physical and chemical pictures. The delicate evaluations are thoroughly conducted on the optimal lattices, the spatial charge distributions before and after chemical modifications, the atom, orbital, and spin-projected density of states, the spin densities, the magnetic moments, the rich optical excitations, and the atom vibrations. All consistent quantities have successfully identified the multi-orbital hybridizations in various chemical bonds. The current approach of the quasiparticle framework can drive the great development of the phenomenological models; furthermore, the predicted results are able to account for the up-to-date experimental measurements.
    Keywords: Two-dimensional materials, electronic, and optical properties

    Abstract ii Acknowledgments iii List of Figures vii List of Tables xiv Chapter 1 Introduction 1 Chapter 2 Theoretical frameworks 12 2.1 Density functional theory 12 2.1.1 Schrodinger equation 12 2.1.2 The Hohenberg-Kohn theorems 13 2.1.3 Kohn-Sham equations 15 2.1.4 Exchange Correlation Functional 15 2.1.5 Bloch's theorem and plane wave basis sets 16 2.1.6 The Pseudopotential Approximation 18 2.2 Optical Properties of Solids 21 2.2.1 Macroscopic theory 21 2.2.2 Quantum theory 22 2.2.3 Excitonic effects 24 2.3 Phonon properties 25 2.3.1 Harmonic approximations 25 2.3.2 Specific heat capacity – Thermal excitations 28 2.3.3 Phonon-phonon scatterings and thermal conductivity 30 Chapter 3 Optical properties of group IV monolayers 33 3.1 Introduction 33 3.2 Computational details 35 3.2.1 Ground states calculations 35 3.2.2 Optical excitations 36 3.2.3 Many-body effects 37 3.3 Results and discussions 38 3.4 Conclusions and remarks 51 Chapter 4 Electronic and optical properties of GaSe 53 4.1 Electronic and optical properties 53 4.2 Effects of external mechanical strains 60 4.3 Conclusions 81 Chapter 5 Phonon properties of graphene, germanene, and plumbene from harmonic approximation 83 5.1 Introduction 83 5.2 Computational details 85 5.3 Results and discussions 88 5.3.1 Phonon energy dispersions 88 5.3.2 Lattice heat capacity – Thermal excitations 99 5.3.3 Discussions 109 5.4 Conclusions 110 Chapter 6 Phonon properties of Gallium Sulfide 111 6.1 Introduction 111 6.2 Results and discussions 113 6.2.1. Optimal geometric structure 113 6.2.2. Phonon properties 116 6.2.3 Thermal properties 121 6.3 Conclusions 124 Chapter 7 Conclusions and future research 126 7.1 Conclusions 126 7.2 Future research 127 List of Publications 129 Referred papers 129 First-author papers 129 Second-/corresponding-author papers 130 References 131

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang, Y. Zhang, S. V. Dubonos, et al. Electric field effect in atomically thin carbon films. science. 2004, 306,666-669.
    [2] X. Hong, A. Posadas, K. Zou, C. Ahn, and J. Zhu. High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides. Physical review letters. 2009, 102,136808.
    [3] J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, et al. Wetting transparency of graphene. Nature materials. 2012, 11,217-222.
    [4] G. Xin, H. Sun, T. Hu, H. R. Fard, X. Sun, N. Koratkar, et al. Large‐area freestanding graphene paper for superior thermal management. Advanced materials. 2014, 26,4521-4526.
    [5] Y. Q. Li, T. Yu, T. Y. Yang, L. X. Zheng, and K. Liao. Bio‐inspired nacre‐like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Advanced Materials. 2012, 24,3426-3431.
    [6] X. Li, J. Yu, S. Wageh, A. A. Al‐Ghamdi, and J. Xie. Graphene in photocatalysis: a review. Small. 2016, 12,6640-6696.
    [7] W. Yu, L. Sisi, Y. Haiyan, and L. Jie. Progress in the functional modification of graphene/graphene oxide: A review. RSC advances. 2020, 10,15328-15345.
    [8] E. V. Castro, K. Novoselov, S. Morozov, N. Peres, J. L. Dos Santos, J. Nilsson, et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Physical review letters. 2007, 99,216802.
    [9] Y.-W. Son, M. L. Cohen, and S. G. Louie. Energy gaps in graphene nanoribbons. Physical review letters. 2006, 97,216803.
    [10] J.-H. Wong, B.-R. Wu, and M.-F. Lin. Strain effect on the electronic properties of single layer and bilayer graphene. The Journal of Physical Chemistry C. 2012, 116,8271-8277.
    [11] N. T. T. Tran, S.-Y. Lin, C.-Y. Lin, and M.-F. Lin. Geometric and electronic properties of graphene-related systems: Chemical bonding schemes. CRC Press. 2017.
    [12] T. Shirai, T. Shirasawa, T. Hirahara, N. Fukui, T. Takahashi, and S. Hasegawa. Structure determination of multilayer silicene grown on Ag (111) films by electron diffraction: Evidence for Ag segregation at the surface. Physical Review B. 2014, 89,241403.
    [13] J. Fang, P. Zhao, and G. Chen. Germanene growth on Al (111): A case study of interface effect. The Journal of Physical Chemistry C. 2018, 122,18669-18681.
    [14] J. Gao, G. Zhang, and Y.-W. Zhang. Exploring Ag (111) substrate for epitaxially growing monolayer stanene: a first-principles study. Scientific reports. 2016, 6,1-8.
    [15] C.-Z. Xu, Y.-H. Chan, P. Chen, X. Wang, D. Flötotto, J. A. Hlevyack, et al. Gapped electronic structure of epitaxial stanene on InSb (111). Physical Review B. 2018, 97,035122.
    [16] J. Yuhara, B. He, N. Matsunami, M. Nakatake, and G. Le Lay. Graphene's latest cousin: Plumbene epitaxial growth on a “nano WaterCube”. Advanced Materials. 2019, 31,1901017.
    [17] D. C. Elias, R. R. Nair, T. Mohiuddin, S. Morozov, P. Blake, M. Halsall, et al. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science. 2009, 323,610-613.
    [18] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, et al. Tuning superconductivity in twisted bilayer graphene. Science. 2019, 363,1059-1064.
    [19] Z. Jiang, Y. Zhang, Y.-W. Tan, H. Stormer, and P. Kim. Quantum Hall effect in graphene. Solid state communications. 2007, 143,14-19.
    [20] L. Yang, J. Deslippe, C.-H. Park, M. L. Cohen, and S. G. Louie. Excitonic effects on the optical response of graphene and bilayer graphene. Physical review letters. 2009, 103,186802.
    [21] Y. Cai, C.-P. Chuu, C. Wei, and M. Chou. Stability and electronic properties of two-dimensional silicene and germanene on graphene. Physical Review B. 2013, 88,245408.
    [22] M. Ezawa. Monolayer topological insulators: silicene, germanene, and stanene. Journal of the Physical Society of Japan. 2015, 84,121003.
    [23] L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, et al. Silicene field-effect transistors operating at room temperature. Nature nanotechnology. 2015, 10,227-231.
    [24] K. Xu, L. Yin, Y. Huang, T. A. Shifa, J. Chu, F. Wang, et al. Synthesis, properties and applications of 2d layered m iii x vi (m= ga, in; x= s, se, te) materials. Nanoscale. 2016, 8,16802-16818.
    [25] H. Cai, Y. Gu, Y.-C. Lin, Y. Yu, D. B. Geohegan, and K. Xiao. Synthesis and emerging properties of 2D layered III–VI metal chalcogenides. Applied Physics Reviews. 2019, 6,041312.
    [26] Z. Yang and J. Hao. Recent progress in 2D layered III–VI semiconductors and their heterostructures for optoelectronic device applications. Advanced Materials Technologies. 2019, 4,1900108.
    [27] R. John and B. Merlin. Optical properties of graphene, silicene, germanene, and stanene from IR to far UV–A first principles study. Journal of Physics and Chemistry of Solids. 2017, 110,307-315.
    [28] J. Bardeen and D. Pines. Electron-phonon interaction in metals. Physical Review. 1955, 99,1140.
    [29] P. Morel and P. Anderson. Calculation of the superconducting state parameters with retarded electron-phonon interaction. Physical Review. 1962, 125,1263.
    [30] J.-H. Zou, Z.-Q. Ye, and B.-Y. Cao. Phonon thermal properties of graphene from molecular dynamics using different potentials. The Journal of chemical physics. 2016, 145,134705.
    [31] L. Lindsay, C. Hua, X. Ruan, and S. Lee. Survey of ab initio phonon thermal transport. Materials Today Physics. 2018, 7,106-120.
    [32] A. C. Ferrari and D. M. Basko. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology. 2013, 8,235-246.
    [33] T. E. Beechem, R. A. Shaffer, J. Nogan, T. Ohta, A. B. Hamilton, A. E. McDonald, et al. Self-heating and failure in scalable graphene devices. Scientific reports. 2016, 6,1-8.
    [34] C.-Y. Hsieh, Y.-T. Chen, W.-J. Tan, Y.-F. Chen, W. Y. Shih, and W.-H. Shih. Graphene-lead zirconate titanate optothermal field effect transistors. Applied Physics Letters. 2012, 100,113507.
    [35] W. Cochran. Lattice vibrations. Reports on Progress in Physics. 1963, 26,1.
    [36] Y. Duan and D. C. Sorescu. Density functional theory studies of the structural, electronic, and phonon properties of Li 2 O and Li 2 CO 3: Application to CO 2 capture reaction. Physical Review B. 2009, 79,014301.
    [37] A. J. McGaughey and J. M. Larkin. Predicting phonon properties from equilibrium molecular dynamics simulations. Annual review of heat transfer. 2014, 17,
    [38] W. Li, J. Carrete, N. A. Katcho, and N. Mingo. ShengBTE: A solver of the Boltzmann transport equation for phonons. Computer Physics Communications. 2014, 185,1747-1758.
    [39] E. Pop, V. Varshney, and A. K. Roy. Thermal properties of graphene: Fundamentals and applications. MRS bulletin. 2012, 37,1273-1281.
    [40] D. L. Nika, A. I. Cocemasov, and A. A. Balandin. Specific heat of twisted bilayer graphene: Engineering phonons by atomic plane rotations. Applied Physics Letters. 2014, 105,031904.
    [41] H. Mousavi and J. Khodadadi. Electronic heat capacity and thermal conductivity of armchair graphene nanoribbons. Applied Physics A. 2016, 122,1-7.
    [42] R. G. Parr. Density functional theory. Annual Review of Physical Chemistry. 1983, 34,631-656.
    [43] J.-M. Combes, P. Duclos, and R. Seiler, "The born-oppenheimer approximation," in Rigorous atomic and molecular physics, ed: Springer, 1981, pp. 185-213.
    [44] P. Bénilan and H. Brezis, "Nonlinear problems related to the Thomas-Fermi equation," in Nonlinear Evolution Equations and Related Topics, ed: Springer, 2004, pp. 673-770.
    [45] P. Hohenberg and W. Kohn. Density functional theory (DFT). Phys Rev. 1964, 136,B864.
    [46] R. Bauernschmitt and R. Ahlrichs. Stability analysis for solutions of the closed shell Kohn–Sham equation. The Journal of chemical physics. 1996, 104,9047-9052.
    [47] K. Yabana and G. Bertsch. Time-dependent local-density approximation in real time. Physical Review B. 1996, 54,4484.
    [48] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Physical review letters. 1996, 77,3865.
    [49] M. Fox. American Association of Physics Teachers. (2002).
    [50] P. E. Trevisanutto, M. Holzmann, M. Cote, and V. Olevano. Ab initio high-energy excitonic effects in graphite and graphene. Physical Review B. 2010, 81,121405.
    [51] R. Cutkosky. Solutions of a Bethe-Salpeter equation. Physical Review. 1954, 96,1135.
    [52] F. Giustino, M. L. Cohen, and S. G. Louie. GW method with the self-consistent Sternheimer equation. Physical Review B. 2010, 81,115105.
    [53] C. Kittel. Solid state physics. Shell Development Company. 1955.
    [54] M. L. Cohen and S. G. Louie. Fundamentals of condensed matter physics. Cambridge University Press. 2016.
    [55] A. K. Geim and K. S. Novoselov, "The rise of graphene," in Nanoscience and technology: a collection of reviews from nature journals, ed: World Scientific, 2010, pp. 11-19.
    [56] R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora. 2D materials: to graphene and beyond. Nanoscale. 2011, 3,20-30.
    [57] H. Oughaddou, H. Enriquez, M. R. Tchalala, H. Yildirim, A. J. Mayne, A. Bendounan, et al. Silicene, a promising new 2D material. Progress in Surface Science. 2015, 90,46-83.
    [58] N. Liu, G. Bo, Y. Liu, X. Xu, Y. Du, and S. X. Dou. Recent progress on germanene and functionalized germanene: preparation, characterizations, applications, and challenges. Small. 2019, 15,1805147.
    [59] F.-f. Zhu, W.-j. Chen, Y. Xu, C.-l. Gao, D.-d. Guan, C.-h. Liu, et al. Epitaxial growth of two-dimensional stanene. Nature materials. 2015, 14,1020-1025.
    [60] H. González-Herrero, J. M. Gómez-Rodríguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, et al. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science. 2016, 352,437-441.
    [61] C.-Y. Lin, J.-Y. Wu, C.-W. Chiu, and M.-F. Lin. Coulomb excitations and decays in graphene-related systems. CRC Press. 2019.
    [62] J.-Y. Wu, S.-C. Chen, G. Gumbs, and M.-F. Lin. Feature-rich electronic excitations of silicene in external fields. Physical Review B. 2016, 94,205427.
    [63] P.-H. Shih, Y.-H. Chiu, J.-Y. Wu, F.-L. Shyu, and M.-F. Lin. Coulomb excitations of monolayer germanene. Scientific reports. 2017, 7,1-12.
    [64] A. Kara, H. Enriquez, A. P. Seitsonen, L. L. Y. Voon, S. Vizzini, B. Aufray, et al. A review on silicene—new candidate for electronics. Surface science reports. 2012, 67,1-18.
    [65] Z.-X. Guo, Y.-Y. Zhang, H. Xiang, X.-G. Gong, and A. Oshiyama. Structural evolution and optoelectronic applications of multilayer silicene. Physical Review B. 2015, 92,201413.
    [66] V. Tozzini and V. Pellegrini. Prospects for hydrogen storage in graphene. Physical Chemistry Chemical Physics. 2013, 15,80-89.
    [67] B. Joyce. Molecular beam epitaxy. Reports on Progress in Physics. 1985, 48,1637.
    [68] M. Yi and Z. Shen. A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A. 2015, 3,11700-11715.
    [69] H. I. Rasool, E. B. Song, M. Mecklenburg, B. Regan, K. L. Wang, B. H. Weiller, et al. Atomic-scale characterization of graphene grown on copper (100) single crystals. Journal of the American Chemical Society. 2011, 133,12536-12543.
    [70] C.-L. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, et al. Structure of silicene grown on Ag (111). Applied Physics Express. 2012, 5,045802.
    [71] R. Stephan, M.-C. Hanf, M. Derivaz, D. Dentel, M. Asensio, J. Avila, et al. Germanene on Al (111): interface electronic states and charge transfer. The Journal of Physical Chemistry C. 2016, 120,1580-1585.
    [72] J. Yuhara, Y. Fujii, K. Nishino, N. Isobe, M. Nakatake, L. Xian, et al. Large area planar stanene epitaxially grown on Ag (1 1 1). 2D Materials. 2018, 5,025002.
    [73] B. Uchoa and A. C. Neto. Superconducting states of pure and doped graphene. Physical review letters. 2007, 98,146801.
    [74] C. L. Kane and E. J. Mele. Quantum spin Hall effect in graphene. Physical review letters. 2005, 95,226801.
    [75] Z. Qiao, S. A. Yang, W. Feng, W.-K. Tse, J. Ding, Y. Yao, et al. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Physical Review B. 2010, 82,161414.
    [76] H.-y. Liu, S.-Y. Lin, and J.-y. Wu. Stacking-configuration-enriched essential properties of bilayer graphenes and silicenes. The Journal of Chemical Physics. 2020, 153,154707.
    [77] M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V. Afanas’ Ev, and A. Stesmans. Electronic properties of hydrogenated silicene and germanene. Applied Physics Letters. 2011, 98,223107.
    [78] L. Matthes, O. Pulci, and F. Bechstedt. Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles. New Journal of Physics. 2014, 16,105007.
    [79] H. T. Nguyen-Truong, V. Van On, and M.-F. Lin. Optical absorption spectra of Xene and Xane (X = silic, german, stan). Journal of Physics: Condensed Matter. 2021, 33,355701.
    [80] W. Wei, Y. Dai, B. Huang, and T. Jacob. Many-body effects in silicene, silicane, germanene and germanane. Physical Chemistry Chemical Physics. 2013, 15,8789-8794.
    [81] C. Chantler and J. Bourke. Low-energy electron properties: Electron inelastic mean free path, energy loss function and the dielectric function. Recent measurements, applications, and the plasmon-coupling theory. Ultramicroscopy. 2019, 201,38-48.
    [82] G. Onida, L. Reining, and A. Rubio. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys. 2002, 74,601.
    [83] P. Senthilkumar, S. Dhanuskodi, A. R. Thomas, and R. Philip. Enhancement of nonlinear optical and temperature dependent dielectric properties of Ce: BaTiO3 nano and submicron particles. Materials Research Express. 2017, 4,085027.
    [84] L. S. Pedroza, A. J. da Silva, and K. Capelle. Gradient-dependent density functionals of the Perdew-Burke-Ernzerhof type for atoms, molecules, and solids. Physical Review B. 2009, 79,201106.
    [85] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b. 1999, 59,1758.
    [86] P. Politzer and J. S. Murray. The Hellmann-Feynman theorem: a perspective. Journal of molecular modeling. 2018, 24,1-7.
    [87] J. Sakurai and J. Napolitano. Modern Quantum Mechanics. 2-nd edition. Person New International edition. 2014,
    [88] A. Politano and G. Chiarello. Plasmon modes in graphene: status and prospect. Nanoscale. 2014, 6,10927-10940.
    [89] V. K. Dien, H. D. Pham, N. T. T. Tran, N. T. Han, T. M. D. Huynh, T. D. H. Nguyen, et al. Orbital-hybridization-created optical excitations in Li2GeO3. Scientific reports. 2021, 11,1-10.
    [90] V. K. Dien, N. T. Han, W.-P. Su, and M.-F. Lin. Spin-dependent optical excitations in LiFeO2. ACS omega. 2021, 6,25664-25671.
    [91] N. T. Han, V. K. Dien, and M.-F. Lin. Excitonic effects in the optical spectra of Li2SiO3 compound. Scientific reports. 2021, 11,1-10.
    [92] N. Thi Han, V. Khuong Dien, and M.-F. Lin. Electronic and Optical Properties of CsGeX3 (X= Cl, Br, and I) Compounds. ACS Omega. 2022,
    [93] D. Y. Qiu, F. H. da Jornada, and S. G. Louie. Optical Spectrum of ${mathrm{MoS}}_{2}$: Many-Body Effects and Diversity of Exciton States. Physical Review Letters. 2013, 111,216805.
    [94] M. Jain, J. Deslippe, G. Samsonidze, M. L. Cohen, J. R. Chelikowsky, and S. G. Louie. Improved quasiparticle wave functions and mean field for G 0 W 0 calculations: Initialization with the COHSEX operator. Physical Review B. 2014, 90,115148.
    [95] S.-Y. Lin, S.-L. Chang, N. T. T. Tran, P.-H. Yang, and M.-F. Lin. H–Si bonding-induced unusual electronic properties of silicene: A method to identify hydrogen concentration. Physical Chemistry Chemical Physics. 2015, 17,26443-26450.
    [96] S. Trivedi, A. Srivastava, and R. Kurchania. Silicene and germanene: a first principle study of electronic structure and effect of hydrogenation-passivation. Journal of Computational and Theoretical Nanoscience. 2014, 11,781-788.
    [97] P. Lu, L. Wu, C. Yang, D. Liang, R. Quhe, P. Guan, et al. Quasiparticle and optical properties of strained stanene and stanane. Scientific reports. 2017, 7,1-8.
    [98] S. Mahdavifar, S. F. shayesteh, and M. B. Tagani. Electronic and mechanical properties of Plumbene monolayer: A first-principle study. Physica E: Low-dimensional Systems and Nanostructures. 2021, 134,114837.
    [99] H. Zhao, C.-w. Zhang, W.-x. Ji, R.-w. Zhang, S.-s. Li, S.-s. Yan, et al. Unexpected giant-gap quantum spin Hall insulator in chemically decorated plumbene monolayer. Scientific reports. 2016, 6,1-8.
    [100] H.-C. Huang, S.-Y. Lin, C.-L. Wu, and M.-F. Lin. Configuration-and concentration-dependent electronic properties of hydrogenated graphene. Carbon. 2016, 103,84-93.
    [101] D. K. Nguyen, N. T. T. Tran, Y.-H. Chiu, and M.-F. Lin. Concentration-diversified magnetic and electronic properties of halogen-adsorbed silicene. Scientific reports. 2019, 9,1-15.
    [102] C.-C. Liu, W. Feng, and Y. Yao. Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium. Physical Review Letters. 2011, 107,076802.
    [103] C. Kittel. Introduction to solid state physics Eighth edition. 2021,
    [104] T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, et al. Plasmon spectroscopy of free-standing graphene films. Physical Review B. 2008, 77,233406.
    [105] R. Ahuja, S. Auluck, J. Wills, M. Alouani, B. Johansson, and O. Eriksson. Optical properties of graphite from first-principles calculations. Physical Review B. 1997, 55,4999.
    [106] F. Bassani and G. P. Parravicini. Band structure and optical properties of graphite and of the layer compounds GaS and GaSe. Il Nuovo Cimento B (1965-1970). 1967, 50,95-128.
    [107] Y. F. Chen, C. M. Kwei, and C. J. Tung. Optical-constants model for semiconductors and insulators. Physical Review B. 1993, 48,4373-4379.
    [108] P. E. Trevisanutto, M. Holzmann, M. Côté, and V. Olevano. High-energy excitonic effects in graphite and graphene. arXiv preprint arXiv:09091682. 2009,
    [109] D. Y. Qiu, H. Felipe, and S. G. Louie. Optical spectrum of MoS 2: many-body effects and diversity of exciton states. Physical review letters. 2013, 111,216805.
    [110] G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schüller, et al. Identification of excitons, trions and biexcitons in single‐layer WS2. physica status solidi (RRL)–Rapid Research Letters. 2015, 9,457-461.
    [111] X.-F. Wang and T. Chakraborty. Collective excitations of Dirac electrons in a graphene layer with spin-orbit interactions. Physical Review B. 2007, 75,033408.
    [112] X.-F. Wang and T. Chakraborty. Coulomb screening and collective excitations in a graphene bilayer. Physical Review B. 2007, 75,041404.
    [113] F. S. Hage, T. P. Hardcastle, M. N. Gjerding, D. M. Kepaptsoglou, C. R. Seabourne, K. T. Winther, et al. Local Plasmon Engineering in Doped Graphene. ACS Nano. 2018, 12,1837-1848.
    [114] C. V. Gomez, M. Pisarra, M. Gravina, P. Riccardi, and A. Sindona. Plasmon properties and hybridization effects in silicene. Physical Review B. 2017, 95,085419.
    [115] Z. Ben Aziza, H. Henck, D. Pierucci, M. G. Silly, E. Lhuillier, G. Patriarche, et al. van der Waals epitaxy of GaSe/graphene heterostructure: electronic and interfacial properties. ACS nano. 2016, 10,9679-9686.
    [116] Z. Zhu, Y. Cheng, and U. Schwingenschlögl. Topological phase transition in layered GaS and GaSe. Physical review letters. 2012, 108,266805.
    [117] H. Nitta, T. Yonezawa, A. Fleurence, Y. Yamada-Takamura, and T. Ozaki. First-principles study on the stability and electronic structure of monolayer GaSe with trigonal-antiprismatic structure. Physical Review B. 2020, 102,235407.
    [118] X. Li, L. Basile, B. Huang, C. Ma, J. Lee, I. V. Vlassiouk, et al. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene. ACS nano. 2015, 9,8078-8088.
    [119] N. Zhou, R. Wang, X. Zhou, H. Song, X. Xiong, Y. Ding, et al. P‐GaSe/N‐MoS2 vertical heterostructures synthesized by van der Waals epitaxy for photoresponse modulation. Small. 2018, 14,1702731.
    [120] Z. He, J. Guo, S. Li, Z. Lei, L. Lin, Y. Ke, et al. GaSe/MoS2 Heterostructure with Ohmic‐Contact Electrodes for Fast, Broadband Photoresponse, and Self‐Driven Photodetectors. Advanced Materials Interfaces. 2020, 7,1901848.
    [121] S. H. Huynh, N. Q. Diep, T. V. Le, S. K. Wu, C. W. Liu, D. L. Nguyen, et al. Molecular Beam Epitaxy of Two-Dimensional GaTe Nanostructures on GaAs (001) Substrates: Implication for Near-Infrared Photodetection. ACS Applied Nano Materials. 2021, 4,8913-8921.
    [122] N. Q. Diep, C.-W. Liu, S.-K. Wu, W.-C. Chou, S. H. Huynh, and E. Y. Chang. Screw-dislocation-driven growth mode in two dimensional GaSe on GaAs (001) substrates grown by molecular beam epitaxy. Scientific reports. 2019, 9,1-8.
    [123] A. Islam, J. Lee, and P. X.-L. Feng. Atomic layer GaSe/MoS2 van der waals heterostructure photodiodes with low noise and large dynamic range. ACS Photonics. 2018, 5,2693-2700.
    [124] H. J. Zandvliet and A. van Houselt. Scanning tunneling spectroscopy. Annual review of analytical chemistry. 2009, 2,37-55.
    [125] G. Li, A. Luican, and E. Y. Andrei. Scanning tunneling spectroscopy of graphene on graphite. Physical Review Letters. 2009, 102,176804.
    [126] S. Hattendorf, A. Georgi, M. Liebmann, and M. Morgenstern. Networks of ABA and ABC stacked graphene on mica observed by scanning tunneling microscopy. Surface science. 2013, 610,53-58.
    [127] X. Li, M.-W. Lin, A. A. Puretzky, J. C. Idrobo, C. Ma, M. Chi, et al. Controlled Vapor Phase Growth of Single Crystalline, Two-Dimensional GaSe Crystals with High Photoresponse. Scientific Reports. 2014, 4,5497.
    [128] C. H. Lee, S. Krishnamoorthy, D. J. O'Hara, M. R. Brenner, J. M. Johnson, J. S. Jamison, et al. Molecular beam epitaxy of 2D-layered gallium selenide on GaN substrates. Journal of Applied Physics. 2017, 121,094302.
    [129] N. Xu, C. E. Matt, E. Pomjakushina, X. Shi, R. S. Dhaka, N. C. Plumb, et al. Exotic Kondo crossover in a wide temperature region in the topological Kondo insulator SmB 6 revealed by high-resolution ARPES. Physical Review B. 2014, 90,085148.
    [130] D. Thouless. Bandwidths for a quasiperiodic tight-binding model. Physical Review B. 1983, 28,4272.
    [131] A. P. Sutton, M. W. Finnis, D. G. Pettifor, and Y. Ohta. The tight-binding bond model. Journal of Physics C: Solid State Physics. 1988, 21,35.
    [132] Y. Hancock, A. Uppstu, K. Saloriutta, A. Harju, and M. J. Puska. Generalized tight-binding transport model for graphene nanoribbon-based systems. Physical Review B. 2010, 81,245402.
    [133] A. Kahn. Fermi level, work function and vacuum level. Materials Horizons. 2016, 3,7-10.
    [134] N. Ravindra, B. Jariwala, A. Bañobre, and A. Maske. Thermoelectrics: fundamentals, materials selection, properties, and performance. Springer. 2018.
    [135] G. Mudd, M. Molas, X. Chen, V. Zólyomi, K. Nogajewski, Z. R. Kudrynskyi, et al. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals. Scientific reports. 2016, 6,1-10.
    [136] Z. Zhang, Z. Chen, M. Bouaziz, C. Giorgetti, H. Yi, J. Avila, et al. Direct observation of band gap renormalization in layered indium selenide. ACS nano. 2019, 13,13486-13491.
    [137] Z. B. Aziza, D. Pierucci, H. Henck, M. G. Silly, C. David, M. Yoon, et al. Tunable quasiparticle band gap in few-layer GaSe/graphene van der Waals heterostructures. Physical Review B. 2017, 96,035407.
    [138] Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, Y.-H. Lee, et al. Dielectric screening of excitons and trions in single-layer MoS2. Nano letters. 2014, 14,5569-5576.
    [139] P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS nano. 2012, 6,5988-5994.
    [140] A. Gupta, T. Sakthivel, and S. Seal. Recent development in 2D materials beyond graphene. Progress in Materials Science. 2015, 73,44-126.
    [141] G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, et al. Recent advances in two-dimensional materials beyond graphene. ACS nano. 2015, 9,11509-11539.
    [142] S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones. Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annual Review of Materials Research. 2015, 45,1-27.
    [143] V. K. Dien, O. K. Le, V. Chihaia, M.-P. Pham-Ho, and D. N. Son. Monolayer transition-metal dichalcogenides with polyethyleneimine adsorption. Journal of Computational Electronics. 2021, 20,135-150.
    [144] O. K. Le, V. Chihaia, and M.-P. Pham-Ho. Electronic and optical properties of monolayer MoS 2 under the influence of polyethyleneimine adsorption and pressure. RSC Advances. 2020, 10,4201-4210.
    [145] O. K. Le, V. Chihaia, and V. Van On. N-type and p-type molecular doping on monolayer MoS 2. RSC Advances. 2021, 11,8033-8041.
    [146] D. K. Nguyen, N. T. T. Tran, T. T. Nguyen, and M.-F. Lin. Diverse electronic and magnetic properties of chlorination-related graphene nanoribbons. Scientific reports. 2018, 8,1-12.
    [147] N. T. Tien, P. T. B. Thao, V. T. Phuc, and R. Ahuja. Electronic and transport features of sawtooth penta-graphene nanoribbons via substitutional doping. Physica E: Low-dimensional Systems and Nanostructures. 2019, 114,113572.
    [148] S.-Y. Lin, S.-L. Chang, F.-L. Shyu, J.-M. Lu, and M.-F. Lin. Feature-rich electronic properties in graphene ripples. Carbon. 2015, 86,207-216.
    [149] H.-C. Chung, C.-P. Chang, C.-Y. Lin, and M.-F. Lin. Electronic and optical properties of graphene nanoribbons in external fields. Physical Chemistry Chemical Physics. 2016, 18,7573-7616.
    [150] C.-Y. Lin, T.-N. Do, Y.-K. Huang, and M.-F. Lin. Optical properties of graphene in magnetic and electric fields. IOP Publishing. 2017.
    [151] Y.-H. Ho, Y.-H. Chiu, D.-H. Lin, C.-P. Chang, and M.-F. Lin. Magneto-optical selection rules in bilayer Bernal graphene. ACS nano. 2010, 4,1465-1472.
    [152] J.-Y. Wu, S.-C. Chen, O. Roslyak, G. Gumbs, and M.-F. Lin. Plasma excitations in graphene: Their spectral intensity and temperature dependence in magnetic field. ACS nano. 2011, 5,1026-1032.
    [153] Z. Dai, L. Liu, and Z. Zhang. Strain engineering of 2D materials: issues and opportunities at the interface. Advanced Materials. 2019, 31,1805417.
    [154] J. Du, H. Yu, B. Liu, M. Hong, Q. Liao, Z. Zhang, et al. Strain Engineering in 2D Material‐Based Flexible Optoelectronics. Small Methods. 2021, 5,2000919.
    [155] S.-M. Choi, S.-H. Jhi, and Y.-W. Son. Effects of strain on electronic properties of graphene. Physical Review B. 2010, 81,081407.
    [156] H. Ochoa. Strain-induced excitonic instability in twisted bilayer graphene. Physical Review B. 2020, 102,201107.
    [157] Y. Liang, S. Huang, and L. Yang. Many-electron effects on optical absorption spectra of strained graphene. Journal of Materials Research. 2012, 27,403-409.
    [158] Y. Ma, Y. Dai, M. Guo, L. Yu, and B. Huang. Tunable electronic and dielectric behavior of GaS and GaSe monolayers. Physical Chemistry Chemical Physics. 2013, 15,7098-7105.
    [159] M. Rahaman, M. Bejani, G. Salvan, S. A. Lopez-Rivera, O. Pulci, F. Bechstedt, et al. Vibrational properties of GaSe: a layer dependent study from experiments to theory. Semiconductor Science and Technology. 2018, 33,125008.
    [160] M. Yagmurcukardes, R. T. Senger, F. M. Peeters, and H. Sahin. Mechanical properties of monolayer GaS and GaSe crystals. Physical Review B. 2016, 94,245407.
    [161] J. Zhou, S. Mao, and S. Zhang. Noncontacting optostriction driven anisotropic and inhomogeneous strain in two-dimensional materials. Physical Review Research. 2020, 2,022059.
    [162] M. E. Tweedie, Y. Sheng, S. G. Sarwat, W. Xu, H. Bhaskaran, and J. H. Warner. Inhomogeneous strain release during bending of WS2 on flexible substrates. ACS applied materials & interfaces. 2018, 10,39177-39186.
    [163] E. Engel and R. M. Dreizler. Density functional theory. Springer. 2013.
    [164] D. Wing, J. B. Haber, R. Noff, B. Barker, D. A. Egger, A. Ramasubramaniam, et al. Comparing time-dependent density functional theory with many-body perturbation theory for semiconductors: Screened range-separated hybrids and the G W plus Bethe-Salpeter approach. Physical Review Materials. 2019, 3,064603.
    [165] X. Zhou, J. Cheng, Y. Zhou, T. Cao, H. Hong, Z. Liao, et al. Strong second-harmonic generation in atomic layered GaSe. Journal of the American Chemical Society. 2015, 137,7994-7997.
    [166] Z. B. Aziza, V. Zólyomi, H. Henck, D. Pierucci, M. G. Silly, J. Avila, et al. Valence band inversion and spin-orbit effects in the electronic structure of monolayer GaSe. Physical Review B. 2018, 98,115405.
    [167] B. Lv, T. Qian, and H. Ding. Angle-resolved photoemission spectroscopy and its application to topological materials. Nature Reviews Physics. 2019, 1,609-626.
    [168] G. Antonius, D. Y. Qiu, and S. G. Louie. Orbital symmetry and the optical response of single-layer MX monochalcogenides. Nano letters. 2018, 18,1925-1929.
    [169] T. Ohta, A. Bostwick, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Physical Review Letters. 2007, 98,206802.
    [170] W. W. Parson. Modern optical spectroscopy. Springer. 2007.
    [171] N. V. Tkachenko. Optical spectroscopy: methods and instrumentations. Elsevier. 2006.
    [172] C. S. Jung, F. Shojaei, K. Park, J. Y. Oh, H. S. Im, D. M. Jang, et al. Red-to-Ultraviolet Emission Tuning of Two-Dimensional Gallium Sulfide/Selenide. ACS Nano. 2015, 9,9585-9593.
    [173] D. Akinwande, N. Petrone, and J. Hone. Two-dimensional flexible nanoelectronics. Nature communications. 2014, 5,1-12.
    [174] X. Wang, Y. Cui, T. Li, M. Lei, J. Li, and Z. Wei. Recent advances in the functional 2D photonic and optoelectronic devices. Advanced Optical Materials. 2019, 7,1801274.
    [175] R. Kumar, S. Sahoo, E. Joanni, R. K. Singh, R. M. Yadav, R. K. Verma, et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano research. 2019, 12,2655-2694.
    [176] Y. Du, J. Zhuang, J. Wang, Z. Li, H. Liu, J. Zhao, et al. Quasi-freestanding epitaxial silicene on Ag (111) by oxygen intercalation. Science Advances. 2016, 2,e1600067.
    [177] M. Derivaz, D. Dentel, R. Stephan, M.-C. Hanf, A. Mehdaoui, P. Sonnet, et al. Continuous germanene layer on Al (111). Nano letters. 2015, 15,2510-2516.
    [178] M. Ezawa. Valley-polarized metals and quantum anomalous Hall effect in silicene. Physical review letters. 2012, 109,055502.
    [179] L.-F. Huang, P.-L. Gong, and Z. Zeng. Phonon properties, thermal expansion, and thermomechanics of silicene and germanene. Physical Review B. 2015, 91,205433.
    [180] L. Chen, B. Feng, and K. Wu. Observation of a possible superconducting gap in silicene on Ag (111) surface. Applied Physics Letters. 2013, 102,081602.
    [181] H. Pan, Z. Li, C.-C. Liu, G. Zhu, Z. Qiao, and Y. Yao. Valley-polarized quantum anomalous Hall effect in silicene. Physical review letters. 2014, 112,106802.
    [182] A. Razaq, F. Bibi, X. Zheng, R. Papadakis, S. H. M. Jafri, and H. Li. Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications. Materials. 2022, 15,1012.
    [183] H. Xie, M. Hu, and H. Bao. Thermal conductivity of silicene from first-principles. Applied Physics Letters. 2014, 104,131906.
    [184] Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, et al. Tunable bandgap in silicene and germanene. Nano letters. 2012, 12,113-118.
    [185] H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature. 2018, 561,507-511.
    [186] D. L. Nika and A. A. Balandin. Two-dimensional phonon transport in graphene. Journal of Physics: Condensed Matter. 2012, 24,233203.
    [187] L. Lindsay, D. Broido, and N. Mingo. Flexural phonons and thermal transport in graphene. Physical Review B. 2010, 82,115427.
    [188] O. I. Malyi, K. V. Sopiha, and C. Persson. Energy, phonon, and dynamic stability criteria of two-dimensional materials. ACS applied materials & interfaces. 2019, 11,24876-24884.
    [189] X. Gu, Y. Wei, X. Yin, B. Li, and R. Yang. Colloquium: Phononic thermal properties of two-dimensional materials. Reviews of Modern Physics. 2018, 90,041002.
    [190] Y. Zhao, Y. Cai, L. Zhang, B. Li, G. Zhang, and J. T. Thong. Thermal transport in 2D semiconductors—considerations for device applications. Advanced Functional Materials. 2020, 30,1903929.
    [191] I. I. Al-Qasir, A. A. Campbell, G. Sala, J. Y. Lin, Y. Cheng, F. F. Islam, et al. Vacancy-driven variations in the phonon density of states of fast neutron irradiated nuclear graphite. Carbon. 2020, 168,42-54.
    [192] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al. Raman spectrum of graphene and graphene layers. Physical review letters. 2006, 97,187401.
    [193] A. I. Cocemasov, D. L. Nika, and A. A. Balandin. Engineering of the thermodynamic properties of bilayer graphene by atomic plane rotations: the role of the out-of-plane phonons. Nanoscale. 2015, 7,12851-12859.
    [194] Y. Song, Y. Pan, Q. Zheng, and X. S. Yi. The electric self‐heating behavior of graphite‐filled high‐density polyethylene composites. Journal of Polymer Science Part B: Polymer Physics. 2000, 38,1756-1763.
    [195] Q.-Y. Li, K. Xia, J. Zhang, Y. Zhang, Q. Li, K. Takahashi, et al. Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method. Nanoscale. 2017, 9,10784-10793.
    [196] Y. Miyamoto, M. L. Cohen, and S. G. Louie. Ab initio calculation of phonon spectra for graphite, BN, and BC 2 N sheets. Physical Review B. 1995, 52,14971.
    [197] L. J. Sham and M. Schlüter. Density-functional theory of the energy gap. Physical review letters. 1983, 51,1888.
    [198] L. T. Kong. Phonon dispersion measured directly from molecular dynamics simulations. Computer Physics Communications. 2011, 182,2201-2207.
    [199] L. Lindsay. First principles peierls-boltzmann phonon thermal transport: a topical review. Nanoscale and Microscale Thermophysical Engineering. 2016, 20,67-84.
    [200] A. Togo and I. Tanaka. First principles phonon calculations in materials science. Scripta Materialia. 2015, 108,1-5.
    [201] J. Hafner. Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond. Journal of computational chemistry. 2008, 29,2044-2078.
    [202] D. C. Patton, D. V. Porezag, and M. R. Pederson. Simplified generalized-gradient approximation and anharmonicity: Benchmark calculations on molecules. Physical Review B. 1997, 55,7454.
    [203] I. Robertson and M. Payne. K-point sampling and the kp method in pseudopotential total energy calculations. Journal of Physics: Condensed Matter. 1990, 2,9837.
    [204] M. Di Ventra and S. T. Pantelides. Hellmann-Feynman theorem and the definition of forces in quantum time-dependent and transport problems. Physical Review B. 2000, 61,16207.
    [205] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al. Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters. 2006, 97,187401.
    [206] J.-A. Yan, W. Y. Ruan, and M. Y. Chou. Phonon dispersions and vibrational properties of monolayer, bilayer, and trilayer graphene: Density-functional perturbation theory. Physical Review B. 2008, 77,125401.
    [207] B. Peng, H. Zhang, H. Shao, Y. Xu, G. Ni, R. Zhang, et al. Phonon transport properties of two-dimensional group-IV materials from ab initio calculations. Physical Review B. 2016, 94,245420.
    [208] B. Peng, D. Zhang, H. Zhang, H. Shao, G. Ni, Y. Zhu, et al. The conflicting role of buckled structure in phonon transport of 2D group-IV and group-V materials. Nanoscale. 2017, 9,7397-7407.
    [209] Z. Qin, G. Qin, X. Zuo, Z. Xiong, and M. Hu. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study. Nanoscale. 2017, 9,4295-4309.
    [210] V. K. Tewary and B. Yang. Singular behavior of the Debye-Waller factor of graphene. Physical Review B. 2009, 79,125416.
    [211] S. Jomehpour Zaveh, M. R. Roknabadi, T. Morshedloo, and M. Modarresi. Electronic and thermal properties of germanene and stanene by first-principles calculations. Superlattices and Microstructures. 2016, 91,383-390.
    [212] J.-A. Yan, R. Stein, D. M. Schaefer, X.-Q. Wang, and M. Chou. Electron-phonon coupling in two-dimensional silicene and germanene. Physical Review B. 2013, 88,121403.
    [213] K. H. Michel and B. Verberck. Theory of the evolution of phonon spectra and elastic constants from graphene to graphite. Physical Review B. 2008, 78,085424.
    [214] Y. D. Kuang, L. Lindsay, S. Q. Shi, and G. P. Zheng. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene. Nanoscale. 2016, 8,3760-7.
    [215] L. F. Huang, P. L. Gong, and Z. Zeng. Correlation between structure, phonon spectra, thermal expansion, and thermomechanics of single-layer ${mathrm{MoS}}_{2}$. Physical Review B. 2014, 90,045409.
    [216] L. F. Huang, T. F. Cao, P. L. Gong, and Z. Zeng. Isotope effects on the vibrational, Invar, and Elinvar properties of pristine and hydrogenated graphene. Solid State Communications. 2014, 190,5-9.
    [217] C. J. Sparks Jr. Inelastic resonance emission of x rays: anomalous scattering associated with anomalous dispersion. Physical Review Letters. 1974, 33,262.
    [218] K. Michel and B. Verberck. Theory of the elastic constants of graphite and graphene. physica status solidi (b). 2008, 245,2177-2180.
    [219] E. F. Sheka, I. Natkaniec, V. Mel'Nikov, and K. Druzbicki. Neutron scattering from graphene oxide paper and thermally exfoliated reduced graphene oxide. Наносистемы: физика, химия, математика. 2015, 6,
    [220] A. Hawari and V. Gillete. Inelastic thermal neutron scattering cross sections for reactor-grade graphite. Nuclear Data Sheets. 2014, 118,176-178.
    [221] M. Mohr, J. Maultzsch, E. Dobardžić, S. Reich, I. Milošević, M. Damnjanović, et al. Phonon dispersion of graphite by inelastic x-ray scattering. Physical Review B. 2007, 76,035439.
    [222] S. Klotz, J. Besson, M. Braden, K. Karch, F. Bechstedt, D. Strauch, et al. Transverse acoustic phonons of germanium up to 9.7 GPa by neutron inelastic scattering. physica status solidi (b). 1996, 198,105-113.
    [223] J. Kulda, D. Strauch, P. Pavone, and Y. Ishii. Inelastic-neutron-scattering study of phonon eigenvectors and frequencies in Si. Physical Review B. 1994, 50,13347.
    [224] J. Yarnell, J. Warren, R. Wenzel, and P. Dean, "Lattice Dynamics of Gallium Phosphide," in Neutron Inelastic Scattering Vol. I. Proceedings of a Symposium on Neutron Inelastic Scattering, 1968.
    [225] I. I. Al-Qasir, A. A. Campbell, G. Sala, J. Y. Y. Lin, Y. Cheng, F. F. Islam, et al. Vacancy-driven variations in the phonon density of states of fast neutron irradiated nuclear graphite. Carbon. 2020, 168,42-54.
    [226] L. Feng Huang and Z. Zeng. Lattice dynamics and disorder-induced contraction in functionalized graphene. Journal of Applied Physics. 2013, 113,083524.
    [227] L. Cheng, C. Zhang, and Y. Liu. How to resolve a phonon-associated property into contributions of basic phonon modes. Journal of Physics: Materials. 2019, 2,045005.
    [228] H. Shao, X. Tan, J. Jiang, and H. Jiang. First-principles study on the elastic properties of Cu <sub>2</sub> GeSe <sub>3</sub>. EPL (Europhysics Letters). 2016, 113,26001.
    [229] L. X. Benedict, S. G. Louie, and M. L. Cohen. Heat capacity of carbon nanotubes. Solid State Communications. 1996, 100,177-180.
    [230] T. Nihira and T. Iwata. Temperature dependence of lattice vibrations and analysis of the specific heat of graphite. Physical Review B. 2003, 68,134305.
    [231] X. Lin, B.-B. Chen, W. Li, Z. Y. Meng, and T. Shi. Exciton proliferation and fate of the topological mott insulator in a twisted bilayer graphene lattice model. Physical Review Letters. 2022, 128,157201.
    [232] Z. Aksamija and I. Knezevic. Thermal transport in graphene nanoribbons supported on SiO${}_{2}$. Physical Review B. 2012, 86,165426.
    [233] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis. 2D transition metal dichalcogenides. Nature Reviews Materials. 2017, 2,1-15.
    [234] K. Kalantar‐zadeh, J. Z. Ou, T. Daeneke, M. S. Strano, M. Pumera, and S. L. Gras. Two‐dimensional transition metal dichalcogenides in biosystems. Advanced Functional Materials. 2015, 25,5086-5099.
    [235] A. Carvalho, M. Wang, X. Zhu, A. S. Rodin, H. Su, and A. H. C. Neto. Phosphorene: from theory to applications. Nature Reviews Materials. 2016, 1,1-16.
    [236] A. Molle, C. Grazianetti, L. Tao, D. Taneja, M. H. Alam, and D. Akinwande. Silicene, silicene derivatives, and their device applications. Chemical Society Reviews. 2018, 47,6370-6387.
    [237] W. Kim, C. Li, F. A. Chaves, D. Jiménez, R. D. Rodriguez, J. Susoma, et al. Tunable graphene–GaSe dual heterojunction device. Advanced Materials. 2016, 28,1845-1852.
    [238] B. Chitara and A. Ya'akobovitz. Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets. Nanoscale. 2018, 10,13022-13027.
    [239] B. P. Bahuguna, L. Saini, R. O. Sharma, and B. Tiwari. Hybrid functional calculations of electronic and thermoelectric properties of GaS, GaSe, and GaTe monolayers. Physical Chemistry Chemical Physics. 2018, 20,28575-28582.
    [240] L. Hu and D. Wei. Janus group-III chalcogenide monolayers and derivative type-II heterojunctions as water-splitting photocatalysts with strong visible-light absorbance. The Journal of Physical Chemistry C. 2018, 122,27795-27802.
    [241] B. Marfoua and J. Hong. High thermoelectric performance in two dimensional chalcogenides systems: GaSe and GaTe. Nanotechnology. 2020, 32,115702.
    [242] A. Karatay. Controlling of two photon absorption properties by altering composition ratio of GaSxSe1− x crystals. Optics & Laser Technology. 2019, 111,6-10.
    [243] Y. Wu, D. Zhang, K. Lee, G. S. Duesberg, A. Syrlybekov, X. Liu, et al. Quantum confinement and gas sensing of mechanically exfoliated GaSe. Advanced Materials Technologies. 2017, 2,1600197.
    [244] B. Zhou, S.-J. Gong, K. Jiang, L. Xu, L. Shang, J. Zhang, et al. A type-II GaSe/GeS heterobilayer with strain enhanced photovoltaic properties and external electric field effects. Journal of Materials Chemistry C. 2020, 8,89-97.
    [245] S. Demirci, N. Avazlı, E. Durgun, and S. Cahangirov. Structural and electronic properties of monolayer group III monochalcogenides. Physical Review B. 2017, 95,115409.
    [246] H. Wang, G. Qin, J. Yang, Z. Qin, Y. Yao, Q. Wang, et al. First-principles study of electronic, optical and thermal transport properties of group III–VI monolayer MX (M= Ga, In; X= S, Se). Journal of Applied Physics. 2019, 125,245104.
    [247] M. J. Hamer, J. Zultak, A. V. Tyurnina, V. Zólyomi, D. Terry, A. Barinov, et al. Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopy. ACS nano. 2019, 13,2136-2142.
    [248] M. M. Obeid, A. Bafekry, S. U. Rehman, and C. V. Nguyen. A type-II GaSe/HfS2 van der Waals heterostructure as promising photocatalyst with high carrier mobility. Applied Surface Science. 2020, 534,147607.
    [249] X. Li, M.-W. Lin, J. Lin, B. Huang, A. A. Puretzky, C. Ma, et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Science advances. 2016, 2,e1501882.
    [250] T. Pandey, D. S. Parker, and L. Lindsay. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys. Nanotechnology. 2017, 28,455706.
    [251] L. Falkovsky. Phonon dispersion in graphene. Journal of Experimental and Theoretical Physics. 2007, 105,397-403.
    [252] H. Tornatzky, R. Gillen, H. Uchiyama, and J. Maultzsch. Phonon dispersion in MoS 2. Physical Review B. 2019, 99,144309.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE