研究生: |
方柏霖 Fang, Po-Lin |
---|---|
論文名稱: |
鎖相放大技術應用於高靈敏AlGaN/GaN
高電子遷移率電晶體感測器之研究 Highly Sensitivity AlGaN/GaN HEMTs Sensors using lock-in amplification technique |
指導教授: |
張允崇
Chang, Yun-Chorng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 高電子遷移率電晶體 、二維電子氣體 |
外文關鍵詞: | High-electron-mobility transistor, HEMTs 2DEG |
相關次數: | 點閱:77 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文以AlGaN/GaN異質結構所組成的高電子遷移率電晶體元件(High electron mobility transistor,HEMTs)作為化學感測器的應用。當感測區與各種不同的化學環境,元件汲極-源極間的輸出的瞬向電流的數值產生明顯的增減。化學物質的特性使感測區表面電位產生變化,改變了異質結構接面的二維電子氣體(two- dimensional electron gas,2DEG)通道的濃度,同時也改變了汲極-源極間的電阻值。
AlGaN/GaN異質結構HEMTs元件對光源的靈敏度很高,在暗室中與UV光的照射的環境,元件在固定電壓時輸出的電流值有顯著的差異。固定DC電壓2.2V量測pH5-pH9變化的酸鹼溶液,元件有20mA/pH的變化量,感測能力的極限可以偵測到0.034pH的改變。而固定AC電壓以function generator輸出4.4V,50Hz,可以量測到元件感測區會有15mV/pH的變化量,感測能力的極限可以偵測到0.006pH更細微的pH值改變。
為了測試HEMTs元件是否能進行生物感測,利用微流體通道結合HEMTs並導入鎖像放大器的量測。APTES的NH2基會與FITC 的異硫氫酸根離子產生鍵結反應,當感測區表面的APTES分子附著FITC螢光染劑前後有著9mV的改變。
Abstract
In this dissertation, applications of AlGaN/GaN high-electron-mobility transistors (HEMTs) as chemical sensors are investigated. The drain-source current is very sensitive to the chemical environment of the exposed gate region for a gateless HEMT. The change of the surface states at the gate regions affects the two-dimensional electron gas (2DEG) channel, which also changes the drain-source resistivity. The pH sensitivity of the device was measured to be 20 mA/pH when DC biasing was 2.2 V. The minimum detectable sensitivity is estimated to be 0.034 pH. It was also discovered that ultraviolet illumination affects the pH sensitivity and the measurements should be kept in dark condition to avoid this parasite effect. The pH sensitivity when biasing under AC condition was also studied. With the help from the lock-in amplifier, the device was able to distinguish 0.006 pH changes for the solution. The sensitivity was measured to be 15 mA/pH when AC biasing the device with 4.4 V. Square waves with a frequency of 50 Hz were used the excitation pulses.
In order to prepare the devices for precision bimolecule detections, the devices were integrated with a microfluidic system. Fluorescein isothiocyanate (FITC) molecules were used as the model molecules to develop a suitable detection system. The exposed gate region was first treated with (3-aminopropyl)-triethoxysilane (APTES) to obtain a amine-terminated surface. The subsequent flowing of FITC-containing solution triggered a 9 mV changes under AC biasing conditions.
HEMT sensors developed in this study were ready for future biodetection applications. Future developments of the device by reducing size the gate region will possibly increase the sensitivity. By collaborating with biologists, this HEMT sensors will have bright future in the field of biodetection and chemical detections.
Reference
[1] R. Mehandru , B. Luo , B.S. Kang , Jihyun Kim , F. Ren , S.J. Pearton ,C.-C. Pan , G.-T. Chen , J.-I. Chyi “AlGaN/GaN HEMT based liquid sensors”
Solid-State Electronics 48351-353 (2004)
[2] B. S. Kang, H. T. Wang, F. Ren, and S. J. Pearton “Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors” Journal of applied physics 104, 031101 (2008)
[3] B. S. Kang, H. T. Wang, and F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum “pH sensor using AlGaN/GaN high electron mobility transistors with Sc2O3 in the gate region” 91, Applied physics letter 012110 (2007)
[4] Yun-Chorng CHANG, Yun-Li LI, Tzung-Han LIN, and Jinn-Kong SHEU “Variations of Channel Conductance in AlGaN/GaN Structure with Sub Bandgap Laser Light and Above-Bandgap Illuminations” Japanese Journal of Applied PhysicsVol. 46, No. 6A, pp. 3382-3384 (2007)
[5] K. H. Chen, B. S. Kang, H. T. Wang, T. P. Lele, F. Ren, Y. L. Wang,C. Y. Chang,S. J. Pearton, D. M. Dennis, J. W. Johnson, P. Rajagopal,J. C. Roberts, E. L. Piner, and K. J. Linthicum “c-erbB-2 sensing using AlGaN/GaN high electron mobility transistors for breast cancer detection”
92, Applied physics letter 192103 (2008)
[6] H. T. Wang, B. S. Kang, T. F. Chancellor, Jr, T. P. Lele, Y. Tseng,F. Ren,, S. J. Pearton, A. Dabiran, A. Osinsky, and P. P. Chow “Selective Detection of Hg(II)Ions from Cu(II) and Pb(II) Using AlGaN/GaN High Electron Mobility Transistors” Electrochemical and Solid-State Letters, 10 /11/ J150-J153 (2007)
[7] Hung-Ta Wang, B. S. Kang, T. F. Chancellor, Jr., T. P. Lele, Y. Tseng, and F. Ren, S. J. Pearton, W. J. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum “Fast electrical detection of Hg(II) ions with AlGaN/GaN high electron mobility transistors” Applied physics letter 91, 042114 (2007)
[8] H. T. Wang, B. S. Kang, and F. Ren, S. J. Pearton, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum “Electrical detection of kidney injury molecule-1 with AlGaN/GaN high electron mobility transistors” Applied physics letter 91, 222101 (2007)
[9] K.H. Chen, H.W.Wang, B.S. Kang, C.Y. Chang, Y.L.Wang, T.P.Lele,F. Ren, S.J. Pearton, A. Dabiran, A. Osinsky, P.P. Chow “Low Hg(II) ion concentration electrical detection with AlGaN/GaN high electron mobility transistors” Sensors and Actuators B 134 386-389 (2008)
[10] B. S. Kang, S. Kim, J. Kim, R. Mehandru, F. Ren, K. Baik, S. J. Pearton, B. P.Gila, C. R. Abernathy, C.-C. Pan, G.-T. Chen, J.-I.Chyi,M.Sheplak,T.Nishida,V.Chandrasekaran, and S. N. G. Chu “AlGaN/GaN high electron mobility transistor structures for pressure and pH sensing”
phys. stat. sol. (c) 2, No. 7, 2684–2687 (2005)
[11] J. Bernat, P. Javorka, A. Fox, M. Marso, H. Luth, P. Kordos “Effectof surface passivation on performance of AlGaN/GaN/Si HEMTs” Solid-State Electronics 47 2097-2103 (2003)
[12] B. Jogai “Influence of surface states on the two-dimensional electron gas in AlGaNÕ GaN heterojunction field-effect transistors” Journal of Applied Physics Volume 93, Number 3 1 February (2003)
[13] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck,and U. K. Mishra “Polarization effects, surface states, and the source of electronsin AlGaNÕGaN heterostructure field effect transistors” Journal
of Applied Physics Volume 77, Number 2 10 July (2000)
[14] G. Koley, M. G. Spencer “On the origin of the two-dimensional electron gas at the AlGaN/GaN heterostructure interface” Applied Physics Letters 86, 042107 (2005)
[15] 張育榮 “場效電板氮化鋁鎵/氮化鎵高電子移導率電晶體之製作與應用” 2006 中央大學電機所 博士班論文
[16] 李易修 “AlGaN/GaN高電子遷移率電晶體應用於感測器之研究” 2009 成功大學光電與工程所 碩士班論文
[17] 吳家駿 “藉由電調製反射光譜判斷AlGaN/GaN介面中的極化電荷密度” 2006 中央大學物理所 碩士班論文
[18] 許德志 “N型氮化鎵的表面粗化對thin-GaN LED之光性研究” 2007中央大學化學工程與材料工程所 碩士班論文
[19] 張嘉軒 “藉由非接觸式電場及光調製反射光譜探討氮化鎵表面能帶的彎曲現象” 2005 中山大學物理研究所 碩士班論文
[20] 高雄大學電機工程學系 霍爾量測實驗
[21] 施敏 “ 半導體元件物理與製作技術 ”