簡易檢索 / 詳目顯示

研究生: 方柏霖
Fang, Po-Lin
論文名稱: 鎖相放大技術應用於高靈敏AlGaN/GaN 高電子遷移率電晶體感測器之研究
Highly Sensitivity AlGaN/GaN HEMTs Sensors using lock-in amplification technique
指導教授: 張允崇
Chang, Yun-Chorng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 73
中文關鍵詞: 高電子遷移率電晶體二維電子氣體
外文關鍵詞: High-electron-mobility transistor, HEMTs 2DEG
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文以AlGaN/GaN異質結構所組成的高電子遷移率電晶體元件(High electron mobility transistor,HEMTs)作為化學感測器的應用。當感測區與各種不同的化學環境,元件汲極-源極間的輸出的瞬向電流的數值產生明顯的增減。化學物質的特性使感測區表面電位產生變化,改變了異質結構接面的二維電子氣體(two- dimensional electron gas,2DEG)通道的濃度,同時也改變了汲極-源極間的電阻值。
    AlGaN/GaN異質結構HEMTs元件對光源的靈敏度很高,在暗室中與UV光的照射的環境,元件在固定電壓時輸出的電流值有顯著的差異。固定DC電壓2.2V量測pH5-pH9變化的酸鹼溶液,元件有20mA/pH的變化量,感測能力的極限可以偵測到0.034pH的改變。而固定AC電壓以function generator輸出4.4V,50Hz,可以量測到元件感測區會有15mV/pH的變化量,感測能力的極限可以偵測到0.006pH更細微的pH值改變。
    為了測試HEMTs元件是否能進行生物感測,利用微流體通道結合HEMTs並導入鎖像放大器的量測。APTES的NH2基會與FITC 的異硫氫酸根離子產生鍵結反應,當感測區表面的APTES分子附著FITC螢光染劑前後有著9mV的改變。

    Abstract
    In this dissertation, applications of AlGaN/GaN high-electron-mobility transistors (HEMTs) as chemical sensors are investigated. The drain-source current is very sensitive to the chemical environment of the exposed gate region for a gateless HEMT. The change of the surface states at the gate regions affects the two-dimensional electron gas (2DEG) channel, which also changes the drain-source resistivity. The pH sensitivity of the device was measured to be 20 mA/pH when DC biasing was 2.2 V. The minimum detectable sensitivity is estimated to be 0.034 pH. It was also discovered that ultraviolet illumination affects the pH sensitivity and the measurements should be kept in dark condition to avoid this parasite effect. The pH sensitivity when biasing under AC condition was also studied. With the help from the lock-in amplifier, the device was able to distinguish 0.006 pH changes for the solution. The sensitivity was measured to be 15 mA/pH when AC biasing the device with 4.4 V. Square waves with a frequency of 50 Hz were used the excitation pulses.
    In order to prepare the devices for precision bimolecule detections, the devices were integrated with a microfluidic system. Fluorescein isothiocyanate (FITC) molecules were used as the model molecules to develop a suitable detection system. The exposed gate region was first treated with (3-aminopropyl)-triethoxysilane (APTES) to obtain a amine-terminated surface. The subsequent flowing of FITC-containing solution triggered a 9 mV changes under AC biasing conditions.
    HEMT sensors developed in this study were ready for future biodetection applications. Future developments of the device by reducing size the gate region will possibly increase the sensitivity. By collaborating with biologists, this HEMT sensors will have bright future in the field of biodetection and chemical detections.

    目錄 摘要 Ⅲ Abstract Ⅳ 致謝 Ⅵ 目錄 Ⅶ 表格目錄 XI 圖目錄 XI 第一章 簡介 1 1-1 研究動機 1 1-2 二維電子氣體(two dimensional electron gas,2DEG) 2 1-2.1 半導體異質接面 2 1-2.2 二維電子氣體的起源 8 1-2.3表面保護層對HEMTs元件的影響 11 1-3 AlGaN/GaN 高電子遷移率電晶體(HEMTs) 13 1-4 AlGaN/GaN 高電子遷移率電晶體感測器應用 15 1-4.1 AlGaN/GaN HEMTs極性液體感測 15 1-4.2 AlGaN/GaN HEMTs酸鹼溶液感測 17 1-4.3 AlGaN/GaN HEMTs元件DNA感測 19 1-5 霍爾效應 20 第二章 實驗儀器與實驗製程 24 2-1 製程儀器介紹 24 2-1.1光罩對準儀 24 2-1.2 電子束蒸鍍機 25 2-1.3 快速退火爐 26 2-1.4 電感耦合式電漿蝕刻機 26 2-1.5 磁控濺鍍機 27 2-1.6 表面粗度儀 27 2-1.7 打線機 28 2-1.8 氧電漿蝕刻機 28 2-2 量測儀器介紹 29 2-2.1 分析型探針系統 29 2-2.2 酸鹼度計 29 2-2.3 電源電錶 30 2-2.4 訊號產生器 30 2-2.5 鎖相放大器 31 2-2.6 針筒幫浦 31 2-3 HEMTs元件製作 32 2-3.1 元件結構 32 2-3.2 歐姆接觸製作 33 2-3.3 元件絕緣層製作 35 2-3.4 Cr/Au導線製作 36 2-3.5 保護層沉積 37 2-3.6 開啟感測區 38 2-3.7 實驗架設以及定量溶液調配 39 2-4微流體通道與量測電路板系統 40 2-4.1 PDMS高分子聚合物 40 2-4.2 微流體通道製作 41 2-4.3量測電路板系統 43 第三章HEMTs電性分析與感測器應用 45 3-1 HEMTs的I-V曲線電性分析 45 3-2 HEMTs在UV光與黑暗中的酸鹼量測I-V曲線 48 3-2.1 HEMTs酸鹼度量測實驗 49 3-3 HEMTs元件感測區電阻值與電阻率變化 52 3-4 HEMTs在DC與AC條件下酸鹼度量測比較 56 3-4.1 HEMTs在DC條件下酸鹼度量測 56 3-4.2 HEMTs在AC條件下酸鹼度量測 58 3-5 HEMTs元件應用於生物感測 62 3-5.1 HEMTs元件感測FITC螢光染劑 62 第四章 結論與未來展望 65 4-1 結論 65 4-2 未來展望 66 4-2.1 利用HEMTs元件進行醣分子感測 66 4-2.2 奈米線結合HEMTs感測元件製程 68 Reference 70

    Reference
    [1] R. Mehandru , B. Luo , B.S. Kang , Jihyun Kim , F. Ren , S.J. Pearton ,C.-C. Pan , G.-T. Chen , J.-I. Chyi “AlGaN/GaN HEMT based liquid sensors”
    Solid-State Electronics 48351-353 (2004)

    [2] B. S. Kang, H. T. Wang, F. Ren, and S. J. Pearton “Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors” Journal of applied physics 104, 031101 (2008)

    [3] B. S. Kang, H. T. Wang, and F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum “pH sensor using AlGaN/GaN high electron mobility transistors with Sc2O3 in the gate region” 91, Applied physics letter 012110 (2007)

    [4] Yun-Chorng CHANG, Yun-Li LI, Tzung-Han LIN, and Jinn-Kong SHEU “Variations of Channel Conductance in AlGaN/GaN Structure with Sub Bandgap Laser Light and Above-Bandgap Illuminations” Japanese Journal of Applied PhysicsVol. 46, No. 6A, pp. 3382-3384 (2007)

    [5] K. H. Chen, B. S. Kang, H. T. Wang, T. P. Lele, F. Ren, Y. L. Wang,C. Y. Chang,S. J. Pearton, D. M. Dennis, J. W. Johnson, P. Rajagopal,J. C. Roberts, E. L. Piner, and K. J. Linthicum “c-erbB-2 sensing using AlGaN/GaN high electron mobility transistors for breast cancer detection”
    92, Applied physics letter 192103 (2008)

    [6] H. T. Wang, B. S. Kang, T. F. Chancellor, Jr, T. P. Lele, Y. Tseng,F. Ren,, S. J. Pearton, A. Dabiran, A. Osinsky, and P. P. Chow “Selective Detection of Hg(II)Ions from Cu(II) and Pb(II) Using AlGaN/GaN High Electron Mobility Transistors” Electrochemical and Solid-State Letters, 10 /11/ J150-J153 (2007)

    [7] Hung-Ta Wang, B. S. Kang, T. F. Chancellor, Jr., T. P. Lele, Y. Tseng, and F. Ren, S. J. Pearton, W. J. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum “Fast electrical detection of Hg(II) ions with AlGaN/GaN high electron mobility transistors” Applied physics letter 91, 042114 (2007)

    [8] H. T. Wang, B. S. Kang, and F. Ren, S. J. Pearton, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum “Electrical detection of kidney injury molecule-1 with AlGaN/GaN high electron mobility transistors” Applied physics letter 91, 222101 (2007)

    [9] K.H. Chen, H.W.Wang, B.S. Kang, C.Y. Chang, Y.L.Wang, T.P.Lele,F. Ren, S.J. Pearton, A. Dabiran, A. Osinsky, P.P. Chow “Low Hg(II) ion concentration electrical detection with AlGaN/GaN high electron mobility transistors” Sensors and Actuators B 134 386-389 (2008)

    [10] B. S. Kang, S. Kim, J. Kim, R. Mehandru, F. Ren, K. Baik, S. J. Pearton, B. P.Gila, C. R. Abernathy, C.-C. Pan, G.-T. Chen, J.-I.Chyi,M.Sheplak,T.Nishida,V.Chandrasekaran, and S. N. G. Chu “AlGaN/GaN high electron mobility transistor structures for pressure and pH sensing”
    phys. stat. sol. (c) 2, No. 7, 2684–2687 (2005)

    [11] J. Bernat, P. Javorka, A. Fox, M. Marso, H. Luth, P. Kordos “Effectof surface passivation on performance of AlGaN/GaN/Si HEMTs” Solid-State Electronics 47 2097-2103 (2003)

    [12] B. Jogai “Influence of surface states on the two-dimensional electron gas in AlGaNÕ GaN heterojunction field-effect transistors” Journal of Applied Physics Volume 93, Number 3 1 February (2003)

    [13] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck,and U. K. Mishra “Polarization effects, surface states, and the source of electronsin AlGaNÕGaN heterostructure field effect transistors” Journal
    of Applied Physics Volume 77, Number 2 10 July (2000)

    [14] G. Koley, M. G. Spencer “On the origin of the two-dimensional electron gas at the AlGaN/GaN heterostructure interface” Applied Physics Letters 86, 042107 (2005)

    [15] 張育榮 “場效電板氮化鋁鎵/氮化鎵高電子移導率電晶體之製作與應用” 2006 中央大學電機所 博士班論文

    [16] 李易修 “AlGaN/GaN高電子遷移率電晶體應用於感測器之研究” 2009 成功大學光電與工程所 碩士班論文

    [17] 吳家駿 “藉由電調製反射光譜判斷AlGaN/GaN介面中的極化電荷密度” 2006 中央大學物理所 碩士班論文

    [18] 許德志 “N型氮化鎵的表面粗化對thin-GaN LED之光性研究” 2007中央大學化學工程與材料工程所 碩士班論文

    [19] 張嘉軒 “藉由非接觸式電場及光調製反射光譜探討氮化鎵表面能帶的彎曲現象” 2005 中山大學物理研究所 碩士班論文

    [20] 高雄大學電機工程學系 霍爾量測實驗

    [21] 施敏 “ 半導體元件物理與製作技術 ”

    下載圖示 校內:2013-07-26公開
    校外:2015-07-26公開
    QR CODE