簡易檢索 / 詳目顯示

研究生: 郭芷辰
Kuo, Chih-Chen
論文名稱: 探討遊戲式學習對學習者學習成效之影響:以自我決定理論及獎勵機制為基礎
Exploring the Effects of Game-Based Learning System on Learner’s Learning Effectiveness: Based on Self-Determination Theory and Reward Strategy
指導教授: 王維聰
Wang, Wei-Tsong
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 144
中文關鍵詞: 遊戲式學習獎勵機制消費級腦波儀自我決定理論學習成效
外文關鍵詞: Game-based learning, Reward Strategy, Commercial EEG device, Self-determination theory, Learning effectiveness
相關次數: 點閱:204下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著數位裝置、數位學習的普及,以及休閒型態的轉變,學者開始認為遊戲式學習環境可以幫助學習者改善學習成效。然而科技補助雖能吸引學習者,但卻也可能模糊學習焦點,因此若要達成學習目標,教學內容應著重考慮學習者的心理內涵、學習動機,故本研究透過自我決定理論中的基本心理需求(自主性、勝任感)與相對自主性動機(RAI),建立完整的學習架構,深入探討注意力,並採用有效的獎勵機制作為調節效果,進一步觀察注意力與學習成效,提出相關可行教育政策。目前自我決定理論被廣泛用於了解人類的行為,但依據過去文獻使用此理論來針對遊戲式學習學習者注意力以及獎勵機制的研究仍然非常稀少。
      本研究實驗設計採用二因子受測間之設計,操弄變項為交易獎勵與關係獎勵兩種獎勵機制,並使用腦波儀、問卷多重方法進行資料蒐集與驗證實驗模型中注意力構面的正確性,共回收有效問卷105份,再透過結構方程模型進行資料分析與驗證。研究結果顯示自主性會正向影響相對自主性動機、相對自主性動機會正向提升注意力,而注意力會顯著影響認知學習成效,且認知學習成效會正向影響實際學習成效。然而,先驗知識、勝任感對於相對自主性動機無顯著影響,相對自主性動機對於認知學習成效也無明顯影響。另外,腦波儀所取得之實際注意力數據與注意力構面的問卷數據在分高低組的情況下,皆對相對自主性動機、認知學習成效有顯著差異,且本研究操弄之高關係獎勵組擁有較高之認知與實際學習成效。另外,腦波儀之注意力數據在分高低組的情況下,與問卷調查法得到的主觀注意力數值有一致的檢定結果。
      本研究根據研究結果認為,若要改善學習成效,需先滿足自主性需求,使學習動機內化,從而提高注意力,最後便能改善認知與實際的學習成效。另外,研究結果也支持高程度的交易獎勵機制在實務研究中的可行性,供後續遊戲式學習研究提供參考。

    As computer games and e-learning grow increasingly popular, educators have turned to game-based learning. However, the advancement of technologies into the world of learning can help learners or undermine the importance of learning in turn. In addition, some researchers argue that the teaching content should take learners’ autonomy, competence, and different types of motivation into consideration. Therefore, this study utilizes the self-determination theory for proposing a complete framework and investigate how reward strategies, prior-knowledge, attention impact learners' effectiveness. At present, very little has been published on the mixing of self-determination theory and reward strategies in game-based learning.
    This study used a research approach with system implementation to validate related hypotheses and theories. In the meanwhile, with a commercial EEG device, the study process attention data by EEG signals. The experiment in this study is conducted via a 2-by-2 design (i.e., two levels of transactional rewards and two levels of relational rewards). Data collected from 105 respondents was analyzed using SPSS and SmartPLS. The results indicate that autonomy has a positive effect on RAI; RAI positively influences attention; attention has a positive influence on cognitive learning effectiveness; cognitive learning effectiveness has a positive effect on actual learning effectiveness. On the other hand, transactional reward moderates the relationship between RAI and attention. In the EEG part of the experiment, when the EEG data divided into high and low attention groups, it has a consistent result with the attention value obtained by the questionnaire method. In conclusion, results of this study contribute to the feasibility of transactional reward and also provide a reference for game-based learning.

    摘要 I Abstract II 致謝 V 表目錄 X 圖目錄 XII 第1章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 6 1.3 研究範圍與限制 7 1.4 研究流程 9 第2章 文獻探討 10 2.1 自我決定理論(self-determination theory, SDT) 10 2.1.1 自我決定理論的心理狀態 10 2.1.2 自我決定動機 11 2.2 獎勵機制 14 2.2.1 獎勵機制與遊戲式學習 15 2.2.2 外在動機之綜效性(synergistic extrinsic motivators) 17 2.3 注意力 20 2.4 腦波圖(Electroencephalography, EEG) 21 2.4.1 大腦區域與功能 21 2.4.2 腦波訊號及特性 22 2.4.3 腦波儀(EEG device) 23 2.4.4 腦波儀於數位學習之應用 24 2.4.5 腦波與注意力 26 2.5 學習成效 26 2.6 小結 31 第3章 研究方法 33 3.1 研究架構 33 3.2 研究假說 35 3.2.1 自主性、勝任感與相對自主性動機 35 3.2.2 先驗知識與相對自主性動機 36 3.2.3 先驗知識與認知學習成效 37 3.2.4 相對自主性動機與認知學習成效、注意力 38 3.2.5 注意力與認知學習成效 39 3.2.6 認知學習成效與實際學習成效 40 3.2.7 獎勵機制對相對自主性動機與認知學習成效 40 3.2.8 獎勵機制對相對自主性動機與注意力 41 3.3 實驗儀器設備 43 3.4 實驗設計 45 3.4.1 變項說明 46 3.4.2 實驗對象 47 3.4.3 實驗流程 47 3.5 系統設計 50 3.5.1 系統架構 50 3.5.2 系統介面 54 3.5.3 遊戲程序 57 3.6 衡量變項 58 3.7 問卷設計 59 3.7.1 自我決定理論 60 3.7.2 注意力 63 3.7.3 獎勵機制 64 3.7.4 認知學習成效 64 3.8 前測與資料蒐集 66 3.8.1 前測 66 3.8.2 資料蒐集 71 3.9 資料分析方法 71 第4章 資料分析與結果 75 4.1 敘述性統計分析 75 4.1.1 問卷回收狀況 75 4.1.2 基本資料敘述性統計 76 4.1.3 研究變項敘述性統計 79 4.1.4 研究變項常態性檢定 80 4.2 信度分析 81 4.3 結構方程模式-衡量模型 84 4.3.1 收斂效度 84 4.3.2 區別效度 87 4.3.3 共線性診斷 89 4.4 結構方程模式-結構模型 89 4.4.1 操弄驗證 90 4.4.2 路徑分析 90 4.4.3 調節效果 93 4.4.4 其他研究檢定 95 4.5 研究分析與討論 97 4.5.1 相對自主性動機(RAI) 97 4.5.2 注意力 98 4.5.3 認知學習成效 99 4.5.4 實際學習成效 100 第5章 結論 101 5.1 學術貢獻 101 5.2 實務貢獻 103 5.3 研究限制與未來方向 105 5.3.1 研究限制 105 5.3.2 未來研究方向 106 參考文獻 108 附錄A 先驗知識測驗與實際學習成效題目 120 附錄B 正式問卷 125 附錄C 系統操作情境 133 附錄D 使用者訪談回饋與建議 136 附錄E問項敘述性統計 138

    中文文獻
    經濟部工業局(2019)。數位內容產業年鑑。臺北市:經濟部工業局

    英文文獻
    Acharya, J. N., Hani, A. J., Cheek, J., Thirumala, P., & Tsuchida, T. N. (2016). American Clinical Neurophysiology Society guideline 2: guidelines for standard electrode position nomenclature. The Neurodiagnostic Journal, 56(4), 245-252.
    Aiken, L. S., West, S. G., & Reno, R. R. (1991). Multiple regression: Testing and interpreting interactions. London, England: Sage Press.
    Alavi, M. (1994). Computer-mediated collaborative learning: An empirical evaluation. MIS Quarterly, 18(2), 159-174.
    Amabile, T. M. (1993). Motivational synergy: Toward new conceptualizations of intrinsic and extrinsic motivation in the workplace. Human Resource Management Review, 3(3), 185-201.
    Amabile, T. M., & Pratt, M. G. (2016). The dynamic componential model of creativity and innovation in organizations: Making progress, making meaning. Research in Organizational Behavior, 36, 157-183.
    Armstrong, M. (2010). Armstrong's handbook of reward management practice: Improving performance through reward. London, England: Kogan Page Publishers.
    Baek, Y., & Touati, A. (2017). Exploring how individual traits influence enjoyment in a mobile learning game. Computers in Human Behavior, 69, 347-357.
    Barzilai, S., & Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers & Education, 70, 65-79.
    Baumeister, R. F., & Leary, M. R. (1995). The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497-529.
    Bawa, P., Watson, S. L., & Watson, W. (2018). Motivation is a game: Massively multiplayer online games as agents of motivation in higher education. Computers & Education, 123, 174-194.
    Bermúdez, J. L. (2014). Cognitive science: An introduction to the science of the mind. New York: Cambridge University Press.
    Boyle, E. A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., Lim, T., Ninaus, M., Ribeiro, C., Pereira, J. (2016). An update to the systematic literature review of empirical evidence of the impacts and outcomes of computer games and serious games. Computers & Education, 94, 178-192.
    Bromme, R., Pieschl, S., & Stahl, E. (2010). Epistemological beliefs are standards for adaptive learning: a functional theory about epistemological beliefs and metacognition. Metacognition and Learning, 5, 7-26.
    Brown, C. L., Comunale, M. A., Wigdahl, B., & Urdaneta-Hartmann, S. (2018). Current climate for digital game-based learning of science in further and higher education. FEMS Microbiology Letters, 365(21). doi: 10.1093/femsle/fny237.
    Bushnell, D. S. (1990). Input, process, output: A model for evaluating training. Training & Development Journal, 44(3), 41-44.
    Cabada, R. Z., Estrada, M. L. B., Hernández, F. G., Bustillos, R. O., & Reyes-García, C. A. (2018). An affective and Web 3.0-based learning environment for a programming language. Telematics and Informatics, 35(3), 611-628.
    Cameron, J., Banko, K. M., & Pierce, W. D. (2001). Pervasive negative effects of rewards on intrinsic motivation: The myth continues. The Behavior Analyst, 24(1), 1-44.
    Cameron, J., Pierce, W. D., Banko, K. M., & Gear, A. (2005). Achievement-based rewards and intrinsic motivation: A test of cognitive mediators. Journal of Educational Psychology, 97(4), 641-655.
    Cerasoli, C. P., Nicklin, J. M., & Ford, M. T. (2014). Intrinsic motivation and extrinsic incentives jointly predict performance: A 40-year meta-analysis. Psychological Bulletin, 140(4), 980-1008.
    Chen, C.-M., & Wang, J.-Y. (2018). Effects of online synchronous instruction with an attention monitoring and alarm mechanism on sustained attention and learning performance. Interactive Learning Environments, 26(4), 427-443.
    Chen, C. M., Wang, J. Y., & Yu, C. M. (2017). Assessing the attention levels of students by using a novel attention aware system based on brainwave signals. British Journal of Educational Technology, 48(2), 348-369.
    Chen, J., Wang, G., Zhang, K., Wang, G., & Liu, L. (2019). A pilot study on evaluating children with autism spectrum disorder using computer games. Computers in Human Behavior, 90, 204-214.
    Chen, K.-C., & Jang, S.-J. (2010). Motivation in online learning: Testing a model of self-determination theory. Computers in Human Behavior, 26(4), 741-752.
    Chen, N. S., Wei, C. W., & Huang, Y. C. (2013). The integration of print and digital content for providing learners with constructive feedback using smartphones. British Journal of Educational Technology, 44(5), 837-845.
    Christy, K. R., & Fox, J. (2014). Leaderboards in a virtual classroom: A test of stereotype threat and social comparison explanations for women's math performance. Computers & Education, 78, 66-77.
    Chrysafiadi, K., & Virvou, M. (2013). PeRSIVA: An empirical evaluation method of a student model of an intelligent e-learning environment for computer programming. Computers & Education, 68, 322-333.
    Cockrell, R. C., & Stone, D. N. (2010). Industry culture influences pseudo-knowledge sharing: a multiple mediation analysis. Journal of Knowledge Management, 14(6), 841-857.
    Coffin, R., & MacIntyre, P. (1999). Motivational influences on computer-related affective states. Computers in Human Behavior, 15(5), 549-569.
    Condly, S. J., Clark, R. E., & Stolovitch, H. D. (2003). The effects of incentives on workplace performance: A meta‐analytic review of research studies 1. Performance Improvement Quarterly, 16(3), 46-63.
    Constantin, A., Johnson, H., Smith, E., Lengyel, D., & Brosnan, M. (2017). Designing computer-based rewards with and for children with Autism Spectrum Disorder and/or Intellectual Disability. Computers in Human Behavior, 75, 404-414.
    Cruz, C., Hanus, M. D., & Fox, J. (2017). The need to achieve: Players' perceptions and uses of extrinsic meta-game reward systems for video game consoles. Computers in Human Behavior, 71, 516-524.
    Deci, E. L., Koestner, R., & Ryan, R. M. (2001). Extrinsic rewards and intrinsic motivation in education: Reconsidered once again. Review of Educational Research, 71(1), 1-27.
    Deci, E. L., & Ryan, R. M. (1980). The empirical exploration of intrinsic motivational processes Advances in Experimental Social Psychology (Vol. 13, pp. 39-80). New York: Academic Press.
    Deci, E. L., & Ryan, R. M. (1990, February). A motivational approach to self: Integration in personality. In Nebraska symposium on motivation (Vol. 38, No. 1, pp. 237-288).
    Deci, E. L., & Ryan, R. M. (2000). The" what" and" why" of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227-268.
    DeLeeuw, K. E., & Mayer, R. E. (2011). Cognitive consequences of making computer-based learning activities more game-like. Computers in Human Behavior, 27(5), 2011-2016.
    Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011, September 28-30). From game design elements to gamefulness: Defining gamification. In Proceedings of the 15th international Academic MindTrek Conference: Envisioning Future Media Environments (pp. 9-15). Tampere, Finland: ACM. doi: 10.1145/2181037.2181040.
    Dicheva, D., Dichev, C., Agre, G., & Angelova, G. (2015). Gamification in education: A systematic mapping study. Educational Technology & Society, 18(3), 75-88.
    Diefenbach, M. A., Weinstein, N. D., & O'reilly, J. (1993). Scales for assessing perceptions of health hazard susceptibility. Health Education Research, 8(2), 181-192.
    Doménech-Betoret, F., Abellán-Roselló, L., & Gómez-Artiga, A. (2017). Self-efficacy, satisfaction, and academic achievement: the mediator role of Students' expectancy-value beliefs. Frontiers in Psychology, 8, Article 1193, 1-12.
    Egner, T., & Gruzelier, J. H. (2004). EEG biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials. Clinical Neurophysiology, 115(1), 131-139.
    Eom, S. B., & Ashill, N. (2016). The determinants of students’ perceived learning outcomes and satisfaction in university online education: An update. Decision Sciences Journal of Innovative Education, 14(2), 185-215.
    Erhel, S., & Jamet, E. (2013). Digital game-based learning: Impact of instructions and feedback on motivation and learning effectiveness. Computers & Education, 67, 156-167.
    Eseryel, D., Law, V., Ifenthaler, D., Ge, X., & Miller, R. (2014). An investigation of the interrelationships between motivation, engagement, and complex problem solving in game-based learning. Journal of Educational Technology & Society, 17(1), 42-53.
    Filsecker, M., & Hickey, D. T. (2014). A multilevel analysis of the effects of external rewards on elementary students' motivation, engagement and learning in an educational game. Computers & Education, 75, 136-148.
    Fischer, C., Malycha, C. P., & Schafmann, E. (2019). The Influence of Intrinsic Motivation and Synergistic Extrinsic Motivators on Creativity and Innovation. Frontiers in Psychology, 10, Article 137, 1-15.
    Forvi, E., Bedoni, M., Carabalona, R., Soncini, M., Mazzoleni, P., Rizzo, F., . . . Gramatica, F. (2012). Preliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinations. Sensors and Actuators A: Physical, 180, 177-186.
    Gagne, M., & Deci, E. L. (2005). Self‐determination theory and work motivation. Journal of Organizational Behavior, 26(4), 331-362.
    Garaus, C., Furtmüller, G., & Güttel, W. H. (2016). The hidden power of small rewards: The effects of insufficient external rewards on autonomous motivation to learn. Academy of Management Learning & Education, 15(1), 45-59.
    Ge, Z.-G. (2018). The impact of a forfeit-or-prize gamified teaching on e-learners’ learning performance. Computers & Education, 126, 143-152.
    Georgiou, Y., & Kyza, E. A. (2018). Relations between student motivation, immersion and learning outcomes in location-based augmented reality settings. Computers in Human Behavior, 89, 173-181.
    Ghergulescu, I., & Muntean, C. H. (2016). ToTCompute: a novel EEG-based TimeOnTask threshold computation mechanism for engagement modelling and monitoring. International Journal of Artificial Intelligence in Education, 26(3), 821-854.
    Goldberg, E. (2002). The executive brain: Frontal lobes and the civilized mind. New York: Oxford University Press.
    Groening, C., & Binnewies, C. (2019). “Achievement unlocked!”-The impact of digital achievements as a gamification element on motivation and performance. Computers in Human Behavior, 97, 151-166.
    Grolnick, W. S., & Ryan, R. M. (1989). Parent styles associated with children's self-regulation and competence in school. Journal of Educational Psychology, 81(2), 143-154.
    Guay, F., Ratelle, C. F., Roy, A., & Litalien, D. (2010). Academic self-concept, autonomous academic motivation, and academic achievement: Mediating and additive effects. Learning and Individual Differences, 20(6), 644-653.
    Guo, J. (2018). Building bridges to student learning: Perceptions of the learning environment, engagement, and learning outcomes among Chinese undergraduates. Studies in Educational Evaluation, 59, 195-208.
    Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2010). SEM: an introduction. Mutivariate Data Analysis: A Global Perspective(7th ed., pp. 629-686). Upper Saddle River, NJ: Pearson Education.
    Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indees a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152.
    Hancock, G. R., & Mueller, R. O. (2013). Structural equation modeling: A second course. Charlotte: Information Age Publishing Inc.
    Hanus, M. D., & Fox, J. (2015). Assessing the effects of gamification in the classroom: A longitudinal study on intrinsic motivation, social comparison, satisfaction, effort, and academic performance. Computers & Education, 80, 152-161.
    Hewett, R., & Conway, N. (2016). The undermining effect revisited: The salience of everyday verbal rewards and self‐determined motivation. Journal of Organizational Behavior, 37(3), 436-455.
    Hinton, P. R., McMurray, I., & Brownlow, C. (2014). SPSS Explained. London, England: Routledge Press.
    Homans, G. C. (1958). Social behavior as exchange. American Journal of Sociology, 63(6), 597-606.
    Hou, H.-T., & Li, M.-C. (2014). Evaluating multiple aspects of a digital educational problem-solving-based adventure game. Computers in Human Behavior, 30, 29-38.
    Hu, P. J.-H., & Hui, W. (2012). Examining the role of learning engagement in technology-mediated learning and its effects on learning effectiveness and satisfaction. Decision Support Systems, 53(4), 782-792.
    Hu, P. J.-H., Hui, W., Clark, T. H., & Tam, K. Y. (2007). Technology-assisted learning and learning style: A longitudinal field experiment. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 37(6), 1099-1112.
    Huang, C.-F., Nien, W.-P., & Yeh, Y.-S. (2015). Learning effectiveness of applying automated music composition software in the high grades of elementary school. Computers & Education, 83, 74-89.
    Huang, Y. M., & Chiu, P. S. (2015). The effectiveness of a meaningful learning‐based evaluation model for context‐aware mobile learning. British Journal of Educational Technology, 46(2), 437-447.
    Ilgaz, H., Altun, A., & Aşkar, P. (2014). The effect of sustained attention level and contextual cueing on implicit memory performance for e-learning environments. Computers in Human Behavior, 39, 1-7.
    Izuma, K., Saito, D. N., & Sadato, N. (2008). Processing of social and monetary rewards in the human striatum. Neuron, 58(2), 284-294.
    Jeno, L. M., Grytnes, J.-A., & Vandvik, V. (2017). The effect of a mobile-application tool on biology students' motivation and achievement in species identification: A Self-Determination Theory perspective. Computers & Education, 107, 1-12.
    Jeno, L. M., Vandvik, V., Eliassen, S., & Grytnes, J.-A. (2019). Testing the novelty effect of an m-learning tool on internalization and achievement: A Self-Determination Theory approach. Computers & Education, 128, 398-413.
    Joo, Y. J., So, H.-J., & Kim, N. H. (2018). Examination of relationships among students' self-determination, technology acceptance, satisfaction, and continuance intention to use K-MOOCs. Computers & Education, 122, 260-272.
    Kang, J., Liu, M., & Qu, W. (2017). Using gameplay data to examine learning behavior patterns in a serious game. Computers in Human Behavior, 72, 757-770.
    Kannan, V. R., & Tan, K. C. (2005). Just in time, total quality management, and supply chain management: Understanding their linkages and impact on business performance. Omega, 33(2), 153-162.
    Kebritchi, M., Hirumi, A., & Bai, H. (2010). The effects of modern mathematics computer games on mathematics achievement and class motivation. Computers & Education, 55(2), 427-443.
    Keh, H. T., & Lee, Y. H. (2006). Do reward programs build loyalty for services?: The moderating effect of satisfaction on type and timing of rewards. Journal of Retailing, 82(2), 127-136.
    Keller, J. M. (2009). Motivational design for learning and performance: The ARCS model approach. New York: Springer Science & Business Media.
    Khedher, A. B., Jraidi, I., & Frasson, C. (2019). Tracking students’ mental engagement using EEG signals during an interaction with a virtual learning environment. Journal of Intelligent Learning Systems and Applications, 11(1), 1-14.
    Kirkpatrick, D. L. (1998). Evaluating training programs: The four levels (2 ed., pp. 19-66). San Francisco, Califomia: Berrett-Koehler.
    Kline, R. B. (2015). Principles and practice of structural equation modeling(4th ed.). NewYork: The Guilford Press.
    Kumar, V., & Reinartz, W. (2018). Loyalty Programs: Design and Effectiveness Customer Relationship Management (pp. 179-205). Berlin, Heidelberg, Springer.
    Kuo, M.-S., & Chuang, T.-Y. (2016). How gamification motivates visits and engagement for online academic dissemination–An empirical study. Computers in Human Behavior, 55, 16-27.
    Kyewski, E., & Krämer, N. C. (2018). To gamify or not to gamify? An experimental field study of the influence of badges on motivation, activity, and performance in an online learning course. Computers & Education, 118, 25-37.
    Legault, L., Green-Demers, I., & Pelletier, L. (2006). Why do high school students lack motivation in the classroom? Toward an understanding of academic amotivation and the role of social support. Journal of educational psychology, 98(3), 567-582.
    Li, J., Deng, M., Wang, X., & Tang, Y. (2018). Teachers' and parents' autonomy support and psychological control perceived in junior-high school: Extending the dual-process model of self-determination theory. Learning and Individual Differences, 68, 20-29.
    Liang, H., Wang, M.-M., Wang, J.-J., & Xue, Y. (2018). How intrinsic motivation and extrinsic incentives affect task effort in crowdsourcing contests: A mediated moderation model. Computers in Human Behavior, 81, 168-176.
    Limperos, A. M., Buckner, M. M., Kaufmann, R., & Frisby, B. N. (2015). Online teaching and technological affordances: An experimental investigation into the impact of modality and clarity on perceived and actual learning. Computers & Education, 83, 1-9.
    Lin, C.-H., Zhang, Y., & Zheng, B. (2017). The roles of learning strategies and motivation in online language learning: A structural equation modeling analysis. Computers & Education, 113, 75-85.
    Lin, Y.-C., Lin, Y.-T., & Huang, Y.-M. (2011). Development of a diagnostic system using a testing-based approach for strengthening student prior knowledge. Computers & Education, 57(2), 1557-1570.
    Liu, C., Lim, R., Taylor, S., & Calvo, R. A. (2019). Students' behavioural engagement in reviewing their tele-consultation feedback within an online clinical communication skills platform. Computers in Human Behavior, 94, 35-44.
    Martin, F., & Ertzberger, J. (2016). Effects of reflection type in the here and now mobile learning environment. British Journal of Educational Technology, 47(5), 932-944.
    Mekler, E. D., Brühlmann, F., Tuch, A. N., & Opwis, K. (2017). Towards understanding the effects of individual gamification elements on intrinsic motivation and performance. Computers in Human Behavior, 71, 525-534.
    Moridis, C. N., & Economides, A. A. (2012). Applause as an achievement‐based reward during a computerised self‐assessment test. British Journal of Educational Technology, 43(3), 489-504.
    Mustafa, S. M. S., Elias, H., Noah, S. M., & Roslan, S. (2010). A proposed model of motivational influences on academic achievement with flow as the mediator. Procedia-Social and Behavioral Sciences, 7, 2-9.
    Nicholson, S. (2015). A RECIPE for meaningful gamification. In L. Wood & T. Reiners (Eds.), Gamification in Education and Business (pp. 1-20). New York: Springer.
    Norman, D. A., & Spohrer, J. C. (1996). Learner-centered education. Communications of the ACM, 39(4), 24-27.
    Nunnally, J. C. & Bernstein, I. H. (1994). Psychometric Theory(3rd ed.). New York: McGraw-Hill.
    O'Neil, H. F., Wainess, R., & Baker, E. L. (2005). Classification of learning outcomes: Evidence from the computer games literature. The Cirriculum Journal, 16(4), 455-474.
    Orsini, C., Binnie, V., Wilson, S., & Villegas, M. (2018). Learning climate and feedback as predictors of dental students' self‐determined motivation: The mediating role of basic psychological needs satisfaction. European Journal of Dental Education, 22(2), e228-e236.
    Ortega-Arranz, A., Bote-Lorenzo, M. L., Asensio-Pérez, J. I., Martínez-Monés, A., Gómez-Sánchez, E., & Dimitriadis, Y. (2019). To reward and beyond: Analyzing the effect of reward-based strategies in a MOOC. Computers & Education, 142, 1-14.
    Paull, M., Whitsed, C., & Girardi, A. (2016). Applying the Kirkpatrick model: Evaluating an'interaction for learning framework'curriculum intervention. Issues in Educational Research, 26(3), 490-507.
    Park, B., Ahn, S., & Kim, H. (2010). Blogging: mediating impacts of flow on motivational behavior. Journal of Research in Interactive Marketing, 4(1), 6-29.
    Park, C., Kim, D.-g., Cho, S., & Han, H.-J. (2019). Adoption of multimedia technology for learning and gender difference. Computers in Human Behavior, 92, 288-296.
    Park, J., Kim, S., Kim, A., & Mun, Y. Y. (2019). Learning to be better at the game: Performance vs. completion contingent reward for game-based learning. Computers & Education, 139, 1-15.
    Perhakaran, G., Yusof, A. M., Rusli, M. E., Yusoff, M. Z. M., Mahalil, I., & Zainuddin, A. R. R. (2016). A study of meditation effectiveness for virtual reality based stress therapy using eeg measurement and questionnaire approaches. In Chen YW., Torro C., Tanaka S., Howlett R., C. Jain L, (Eds.), Innovation in Medicine and Healthcare 2015 (pp. 365-373). Cham: Springer International Publishing.
    Piri, S., Pishghadam, R., & Rasekh, Z. E. (2018). New models of L2 achievement based on EFL learners’ joint attention and their emotional, social, and cultural capitals. International Review of Applied Linguistics in Language Teaching, 1(ahead-of-print).
    Rehmat, W., Aaltio, I., Agha, M. H., & Khan, H. R. (2015). Is training effective? Evaluating training effectiveness in call centers. EJBO: Electronic Journal of Business Ethics and Organization Studies, 20(1), 4-13.
    Ritterfeld, U., Weber, R., Fernandes, S., & Vorderer, P. (2004). Think science! Entertainment education in interactive theaters. ACM Computers in Entertainment, 2(1), 1-58.
    Rodríguez-Ardura, I., & Meseguer-Artola, A. (2018). The playfulness of Facebook–Shaped by underlying psychological drivers and gender differences. Telematics and Informatics, 35(8), 2254-2269.
    Ryan, R. M., & Connell, J. P. (1989). Perceived locus of causality and internalization: Examining reasons for acting in two domains. Journal of Personality and Social Psychology, 57(5), 749-761.
    Ryan, R. M., & Deci, E. L. (2000a). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54-67.
    Ryan, R. M., & Deci, E. L. (2000b). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68-78.
    Ryan, R. M., & Deci, E. L. (2017). Self-determination theory: Basic Psychological Needs in Motivation, Development, and Wellness. New York: Guilford Publications.
    Ryan, R. M., Lynch, M. F., Vansteenkiste, M., & Deci, E. L. (2011). Motivation and autonomy in counseling, psychotherapy, and behavior change: A look at theory and practice 1ψ7. The Counseling Psychologist, 39(2), 193-260.
    Ryan, R. M., Rigby, C. S., & Przybylski, A. (2006). The motivational pull of video games: A self-determination theory approach. Motivation and Emotion, 30(4), 344-360.
    Sailer, M., Hense, J. U., Mayr, S. K., & Mandl, H. (2017). How gamification motivates: An experimental study of the effects of specific game design elements on psychological need satisfaction. Computers in Human Behavior, 69, 371-380.
    Salmi, H., & Thuneberg, H. (2019). The role of self-determination in informal and formal science learning contexts. Learning Environments Research, 22, 43-63.
    Sanei, S., & Chambers, J. A. (2007). EEG Signal Processing. Chichester, England: John Wiley & Sons.
    Savazzi, F., Isernia, S., Jonsdottir, J., Di Tella, S., Pazzi, S., & Baglio, F. (2018). Engaged in learning neurorehabilitation: Development and validation of a serious game with user-centered design. Computers & Education, 125, 53-61.
    Seaborn, K., & Fels, D. I. (2015). Gamification in theory and action: A survey. International Journal of Human-Computer Studies, 74, 14-31.
    Sebire, S. J., Jago, R., Fox, K. R., Edwards, M. J., & Thompson, J. L. (2013). Testing a self-determination theory model of children’s physical activity motivation: a cross-sectional study. International Journal of Behavioral Nutrition and Physical Activity, 10, Article 111, 1-9.
    Seymour, G., & Peterman, A. (2018). Context and measurement: an analysis of the relationship between intrahousehold decision making and autonomy. World Development, 111, 97-112.
    Shakroum, M., Wong, K. W., & Fung, C. C. (2018). The influence of gesture-based learning system (GBLS) on learning outcomes. Computers & Education, 117, 75-101.
    Silverstein, S. M., Spaulding, W. D., Menditto, A. A., Savitz, A., Liberman, R. P., Berten, S., & Starobin, H. (2008). Attention shaping: a reward-based learning method to enhance skills training outcomes in schizophrenia. Schizophrenia Bulletin, 35(1), 222-232.
    Sohlberg, M. M., & Mateer, C. A. (1989). Introduction to cognitive rehabilitation: Theory and Practice. Guilford Press.
    Song, H. S., Kalet, A. L., & Plass, J. L. (2016). Interplay of prior knowledge, self‐regulation and motivation in complex multimedia learning environments. Journal of Computer Assisted Learning, 32(1), 31-50.
    Spann, C. A., Shute, V. J., Rahimi, S., & D'Mello, S. K. (2019). The productive role of cognitive reappraisal in regulating affect during game-based learning. Computers in Human Behavior, 100, 358-369.
    Subhash, S., & Cudney, E. A. (2018). Gamified learning in higher education: A systematic review of the literature. Computers in Human Behavior, 87, 192-206.
    Sun-Lin, H.-Z., & Chiou, G.-F. (2017). Effects of Self-explanation and Game-reward on Sixth Graders’ Algebra Variable Learning. Journal of Educational Technology & Society, 20(4), 126-137.
    Sun, Z., Xie, K., & Anderman, L. H. (2018). The role of self-regulated learning in students' success in flipped undergraduate math courses. The Internet and Higher Education, 36, 41-53.
    Surangsrirat, D., & Intarapanich, A. (2015, April 9-12). Analysis of the Meditation Brainwave from Consumer EEG Device. In SoutheastCon 2015 (pp. 1-6). Fort Lauderdale, FL, USA.
    Tanaka, J. S. (1987). "How Big Is Big Enough?": Sample size and goodness of fit in structural equation models with latent variables. Child Development, 58(1), 134-146.
    Troussas, C., Krouska, A., & Sgouropoulou, C. (2020). Collaboration and fuzzy-modeled personalization for mobile game-based learning in higher education. Computers & Education, 144, 1-18.
    van Roy, R., & Zaman, B. (2018). Need-supporting gamification in education: An assessment of motivational effects over time. Computers & Education, 127, 283-297.
    Vanitha, V., & Krishnan, P. (2017). Time-frequency analysis of EEG for improved classification of emotion. International Journal of Biomedical Engineering and Technology, 23(2/3/4), 191-212.
    Vinzi, V. E., Chin, W. W., Henseler, J., & Wang, H. (2010). Handbook of Partial Least Squares: Concepts, Methods and Applications. Berlin, Heidelberg: Springer.
    Vogel, D., Kennedy, D., & Kwok, R. C.-W. (2009). Does using mobile device applications lead to learning? Journal of Interactive Learning Research, 20(4), 469-485.
    Wang, C.-C., & Hsu, M.-C. (2014). An exploratory study using inexpensive electroencephalography (EEG) to understand flow experience in computer-based instruction. Information & Management, 51(7), 912-923.
    Wang, W.-T., & Hou, Y.-P. (2015). Motivations of employees’ knowledge sharing behaviors: A self-determination perspective. Information and Organization, 25(1), 1-26.
    Wang, Z., Gong, S.-Y., Xu, S., & Hu, X.-E. (2019). Elaborated feedback and learning: Examining cognitive and motivational influences. Computers & Education, 136, 130-140.
    Warneken, F., & Tomasello, M. (2008). Extrinsic rewards undermine altruistic tendencies in 20-month-olds. Developmental Psychology, 44(6), 1785-1788.
    Webster, J. (1988). Electroencephalography: Brain electrical activity. Encyclopedia of Medical Devices and Instrumentation, 2, 1084-1107. New York: John Wiley & Sons.
    Wei, F.-Y. F., Wang, Y. K., & Klausner, M. (2012). Rethinking college students' self-regulation and sustained attention: Does text messaging during class influence cognitive learning?. Communication Education, 61(3), 185-204.
    Winter, J., Wentzel, M., & Ahluwalia, S. (2016). Chairs!: a mobile game for organic chemistry students to learn the ring flip of cyclohexane. Journal of Chemical Education, 93(9), 1657-1659.
    Xu, D., Huang, W. W., Wang, H., & Heales, J. (2014). Enhancing e-learning effectiveness using an intelligent agent-supported personalized virtual learning environment: An empirical investigation. Information & Management, 51(4), 430-440.
    Xu, J., & Zhong, B. (2018). Review on portable EEG technology in educational research. Computers in Human Behavior, 81, 340-349.
    Yang, T.-C., Chen, M. C., & Chen, S. Y. (2018). The influences of self-regulated learning support and prior knowledge on improving learning performance. Computers & Education, 126, 37-52.
    Zainuddin, Z. (2018). Students' learning performance and perceived motivation in gamified flipped-class instruction. Computers & Education, 126, 75-88.
    Zhang, X., Meng, Y., de Pablos, P. O., & Sun, Y. (2017). Learning analytics in collaborative learning supported by Slack: From the perspective of engagement. Computers in Human Behavior, 92, 625-633.
    Zhao, L., Lu, Y., Wang, B., & Huang, W. (2011). What makes them happy and curious online? An empirical study on high school students’ Internet use from a self-determination theory perspective. Computers & Education, 56(2), 346-356.

    無法下載圖示 校內:2025-07-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE