簡易檢索 / 詳目顯示

研究生: 姚君偉
Yao, Chun-Wei
論文名稱: 應用於大面積高功率GaN基LEDs之漸變式線寬電極設計與研製
Graded Contact Geometry Design for the Fabrication of Large-Area High-Power GaN-Based Light-Emitting Diodes
指導教授: 王水進
Wnag, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 72
中文關鍵詞: 氮化鎵設計電極
外文關鍵詞: GaN, design, contact
相關次數: 點閱:52下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為提高每晶粒之流明通量,高功率垂直結構氮化鎵基發光二極體之發展以大面積及高發光效率為主流。隨著元件面積的上升,輸入電流無法均勻分佈整體元件,使得寄生串聯電阻變大及順向壓降(Forward voltage drop, VF)上升。為改善此一現像,透明導電層(transparent conduction layer, TCL)的使用、表面結構的設計(surface engineering)與電極圖案之設計常被採用以為因應。
    習知電極設計之圖形,多是由等線寬金屬線條所組成之幾何圖形。雖為增加電流擴散均勻度並降低光遮避耗損,電極之間距安排多依循n-GaN上之擴散長度以為設計準則。然於電極金屬導線進行電流傳輸之時,會形成壓降,深深影響主動層上擴散電流之分佈,使得整體電流分佈之均勻性下降,影響有效導通面積與光析出效率。
    本論文旨在提出一新穎漸變式電極之設計,透過金屬電極間距之恰當安排,降低光由電極下方析出所遭遇之遮蔽耗損。所採用線寬漸變之設計,使得在電極遮蔽率相同的條件之下,能有效改善電流於導線上傳輸之壓降不均,使得元件在同一操作電壓時,整體電流分佈均勻度上升,增益其光輸出之能力,並降低其串聯阻值,提升光電轉換效率。經實驗證明,在元件大小同為1000×1000 m2,線間距同為125 m時,所提出之電極設計(線寬由25 m漸變至15 m),於4 V時,串聯阻值由2.38 Ω降至1.88 Ω,有最佳光電轉換效率,與傳統等線寬元件相較,改善幅度達7 %。

    Vertical structure GaN-based light-emitting diodes (VM-LEDs) are commonly made in large areas with high intensity to increase the luminous flux in each crystal. As the area increases, the current distribution over the compound becomes uneven, thus increased stray resistance and forward voltage drop (VF). Use of transparent conducting layer (TCL), surface engineering, and exclusively shaped electrode are the typical solution to this phenomenon.
    Most prior arts in electrode design are constructed via equal width metallic traces which the current spreading length of n-GaN is adapted as the spacing reference. Said layout may have increased the evenness of current and decreased the masking loss of light, but it also caused a voltage drop as current traveled across metal traces. Such voltage drop caused unevenness of the current distribution on the active region; effective conducting area and light emitting efficiency is also affected.
    The primary purpose of the present thesis is to provide a gradational electrode design. Masking loss of light is decreased by proper spacing of electrodes. The gradual change in trace width decreased the voltage drop, thus enabling better current distribution under same masking rate and operating voltage. As a result, stray resistance is decreased, light emitting capability and photoelectric transfer efficiency is increased.
    During the experiment, components are sized to 1000×1000 m2 with 125 m trace spacing and operated at 4 volt. The proposed electrode design (25 m to 15 m gradation) is capable of decrease the total resistance from 2.38Ω to 1.88Ω. There is a 7 % increase in efficiency when compared to components with traditional equal-width design.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 簡介 1 1-1 GaN-Based LED之發展與目前挑戰議題 1 1-2 次世代照明 6 1-3 研究動機 10 第二章 電極設計理論模擬分析 12 2-1 模擬軟體描述 12 2-2 基本半導體方程式 17 2-2-1 元件模擬基本方程式 17 2-2-2 漂移-擴散模組 18 2-3 遷移率模組 18 2-3-1 遷移率跟摻雜濃度關係式 19 2-4 產生與複合(Generation and Recombination) 19 2-4-1 夏克禮-里德-霍爾複合(SRH) 19 2-4-2 歐傑複合(Auger Recombination) 20 2-5 模擬軟體之操作簡述 20 第三章 線寬漸變式電極設計之觀念及其理論 22 3-1電極金屬線間距與電流分佈及光析出之關係 22 3-2 n-GaN厚度對元件光電特性之影響 28 3-2-1 n-GaN厚度與電流擴散之關係 28 3-2-2 模擬討論與結果 31 3-2-3 n-GaN濃度之影響 34 3-2-4電極材料之電阻係數與厚度之影響 36 3-3 線寬漸變對於電流分佈之影響 37 3-4 線寬漸變電極設計 40 3-5 雙焊墊電極設計 43 第四章 使用線寬漸變式電極設計之垂直結構氮化鎵基發光二極體之 製備 49 4-1 採用線寬漸變電極設計GaN-based LED之製程 49 4-1-1 垂直元件結構金屬基板製程 50 4-1-2 附著層與反射層之使用 50 4-1-3 電鍍鎳金屬基板 52 4-2 雷射剝離製程(Laser Lift-Off, LLO) 56 4-2-1 KrF準分子雷射系統與氮化鎵薄膜技術 57 第五章 實驗結果與討論 63 5-1 實驗電極幾何參數 63 5-2 實驗電流-電壓特性 63 5-3 實驗直流功率-光輸出特性 66 第六章 結論與後續研究 66 6-1 結論 68 6-2 未來工作 69 參考文獻 70 自傳 72

    1. 史光國,“現代半導體發光及雷射二極體材料技術”,全華科技圖書,2001。
    2. http://www.lumileds.com/
    3. 天下雜誌398期,p.62~p.63,2008。
    4. 科儀新知第二十八卷第三期95.12,2005。
    5. 王俞又,“具電流阻障層垂直金屬基板結構GaN-基藍光發光二極體之研製”,國立成功大學微電子工程研究所碩士論文,2007。
    6. Hyunsoo Kim, Kyoung-Kook Kim, Kwang-Ki Choi, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry”, Appl. Phys. Lett., Vol. 91, 2007.
    7. DEVISE, Release 10.0, ISE AG, Zurich, 2005
    8. MDRAW, Relesse 10.0, ISE AG, Zurich, 2005
    9. DESSIS, Relesse 10.0, ISE AG, Zurich, 2005
    10. Hunsang Kim, Ji-Myon Lee, Chul Hun, “Modeling of GaN –based ligt –emitting dode for uniform current spreding”, Appl. Phys. Lett., Vol. 77, No. 12, p. 18 September 2000.
    11. Hunsang Kim, Seong-Ju Park,Hyunsang Hwang, “Effects of current spreading on the performance of GaN-basedlight-emitting diodes”, IEEE Photonics Technology Letters, vol. 48, no. 6, June 2001.
    12. X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaInNÕGaN light-emitting diodes grown on insulating substrates”, Appl. Phys. Lett., vol. 78, No. 21, pp. 3337–3339, 21 May 2001.
    13. A. Ebong , S. Arthur, E. Downey, “Device and circuit modeling of GaN/InGaN light emitting diodes (LEDs) for optimum current spreading”, Solid-State Electronics, 2003.
    14. J. K. Sheu and Y. K. Su, “High-transparency Ni/Au ohmic contact to p-type GaN”, Appl. Phys. Lett., vol. 74, no. 16, pp.2340-2342, 1999.
    15. 李正中,“薄膜光學與鍍膜技術”,藝軒圖書出版社,2002。
    16. W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates”, Appl. Phys. Lett., vol 72, no. 5, pp. 599-601, 1998.

    下載圖示 校內:2013-09-01公開
    校外:2018-09-01公開
    QR CODE