簡易檢索 / 詳目顯示

研究生: 葉奕辰
Yeh, Yi-Chen
論文名稱: 雙層薄膜耦合結構附加環形質量之聲音穿透分析:實驗分析
Sound Transmission of Coupled Membrane-Ring Structure : Experiment Analysis
指導教授: 陳蓉珊
Chen, Jung-San
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 61
中文關鍵詞: 聲學實驗超穎材料穿透損失環形質量
外文關鍵詞: Acoustic experiment, Metamaterial, Transmission loss, Ring mass
相關次數: 點閱:92下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,學者們發現聲學薄膜型超穎材料能有效的阻隔低頻聲音傳遞,並廣泛的延伸探討。本文中我們設計了一個新穎的結構,稱之為coupled membrane structure,並利用阻抗管與有限元素軟體分析其穿透損失。相較於單一層的超穎材料,此結構能產生新的穿透損失波谷與兩個峰值。此外,我們也探討了製程溫度與空氣層的影響。實驗結果與模擬結果相互吻合。

    In recent years, the emergence of membrane-type acoustic metamaterial, which has been a subject of widely-extended discussion, provides a novel way to isolate the low-frequency noise. In this study, I fabricated a novel structure called coupled membrane structure which is comprised of two membrane-type metamaterials. I used the acoustic impedance tube and Comsol Multiphysics, a finite element analysis software package, to examine its transmission loss (TL). Compared to the single-layer metamaterial, an extra TL peak and valley are occurred. I also discovered that the effect of the thermal-curing temperature and air spacing on the TL curves. A good agreement between experiment and simulation is achieved.

    中文摘要 I Abstract II Acknowledgment III List of Figures VI List of Tables IX Nomenclature X CHAPTER 1 INTRODUCTION 1 1.1 Research Motivation 1 1.2 Literature Reviews 2 1.3 Chapter Outline 4 CHAPTER 2 BASIC THEORY OF EXPERIMENTAL TESTING 5 2.1 Basic Acoustic Theory 5 2.2 Sound Transmission of Partition 6 2.3 Introduction of Impedance Tube Method 10 2.3.1 Wave Propagation within Impedance Tube 10 2.3.2 Three-Microphone Method 11 2.3.3 Four-Microphone Method 12 CHAPTER 3 EXPERIMENT 15 3.1 Purpose of the Experiment 15 3.2 Sample Construction 15 3.3 Experiment Equipment and Experimental Software 19 3.3.1 Impedance Tube 20 3.3.2 Microphone 22 3.3.3 Arbitrary Function Generator 23 3.3.4 Loudspeaker 24 3.3.5 DAQ-Data Acquisition 25 3.3.6 LabVIEW 26 3.4 Experimental Setup 28 3.4.1 Procedure of Measurement 28 3.4.2 Microphone Calibration 29 3.4.3 Experimental Steps 30 CHAPTER 4 RESULTS 31 4.1 Single-Layer Metamaterial 31 4.2 Effects of Thermal Curing on Metamaterial 37 4.2.1 Different Heating Temperatures 37 4.2.2 Different Heating Time 38 4.2.3 Cyclic Heating under 50 °C and 100 °C 39 4.3 Coupled Membrane Structure 41 4.3.1 Coupled Membrane-Central-Mass Structure 41 4.3.2 Coupled Membrane-Ring Structure 44 4.3.3 Coupled Membrane-Central-Mass-Ring Structure 48 4.3.4 Asymmetric Resonator: Central Masses 50 4.3.5 Asymmetric Resonator: Central Masses and Ring Masses 52 4.4 Varying Air Spacing Between Membranes 54 CHAPTER 5 CONCLUSIONS 57 References 59

    [1] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures”, Phys. Rev. Lett. 76, 4773-4776 (1996).
    [2] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity”, Phys. Rev. Lett. 84, 4184-4187 (2000).
    [3] H. Chen, B. I. Wu, B. Zhang, and J. A. Kong “Electromagnetic wave interactions with a metamaterial cloak”, Phys. Rev. Lett. 99, 063903 (2007).
    [4] J. B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966-3969 (2000).
    [5] J. Li and C. T. Chan, “Double-negative acoustic metamaterial”, Phys. Rev. E 70, 055602 (2004).
    [6] S. S. Mester and H. Benaroya, “Periodic and near-periodic structures”, Shock. Vib. 2, 69-95 (1995).
    [7] D. J. MEAD, “Wave propagation in continuous periodic structures: research contributions from Southampton”, J. Sound Vib. 190, 495-524 (1996).
    [8] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials”, Sci. 289, 1734-1736 (2000).
    [9] P. A. Deymier, “Acoustic metamaterials and phononic crystals”, Springer (2013).
    [10] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kima, “Acoustic metamaterial with negative density”, Phys. Lett. A 373, 4464-4469 (2009).
    [11] B. Sharma, C.T. Sun, “Acoustic metamaterial with negative modulus and a double negative structure”, arXiv:1501.02833 (2015).
    [12] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “Composite acoustic medium with simultaneously negative density and modulus”, Phys. Rev. Lett. 104, 054301 (2010).
    [13] N. Fang, D. Xi, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, “Ultrasonic metamaterials with negative modulus”, Nat. mater. 5, 452-456(2006).
    [14] D. Torrent and J. Sánchez-Dehesa, “Anisotropic mass density by radially periodic fluid structures”, Phys. Rev. Lett. 105, 174301 (2010).
    [15] I. Spiousas, D. Torrent, and J. Sánchez-Dehesa, “Experimental realization of broadband tunable resonators based on anisotropic metafluids”, Appl. Phys. Lett. 98, 244102 (2011).
    [16] Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, “Membrane-type acoustic metamaterial with negative dynamic mass”, Phys. Rev. Lett. 101, 204301 (2008).
    [17] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials”, Appl. Phys. Lett. 108, 114905 (2010).
    [18] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses”, Appl. Phys. Lett. 110, 124903 (2011).
    [19] Y. G. Zhang , J. H. Wen, Y. Xiao, X. S. Wen, and J. W. Wanga, “Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials”, Phys. Lett. A 376, 1489-1494 (2012).
    [20] G. C. Ma, “Membrane-type acoustic metamaterials”, thesis, Hong Kong University of science and technology, Hong Kong, China (2012).
    [21] G. C. Ma, M. Yang, Z. Y. Yang, and P. Sheng, “Acoustic double negativity with coupled-membrane metamaterial”, Acoust. Soc. Am. 19, 065039 (2013).
    [22] M. Yang, G. C. Ma, Z. Y. Yang, and P. Sheng, “Coupled membranes with doubly negative mass density and bulk modulus”, Phys. Rev. Lett. 110, 134301 (2013).
    [23] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Scaling of membrane-type locally resonant acoustic metamaterial arrays”, J. Acoust. Soc. Am. 132, 2784-2792 (2012).
    [24] F. Langfeldt, J. Riecken, W. Gleine, and O. von Estorff, “A membrane-type acoustic metamaterial with adjustable acoustic properties”, J. sound Vib. 373, 1-18 (2016).
    [25] M. L. Munjal, “Noise and vibration control”, World Scientific (2013).
    [26] M. Howe, “Acoustics and aerodynamic sound”, Cambridge University Press (2015).
    [27] C. E. Wilson, “Noise control: measurement, analysis, and control of sound and vibration”, Krieger (1989).
    [28] M. L. Dong, “The research on sound transmission loss measuring system of acoustic material”, thesis, Shanghai Jiao Tong University, Shanghai, China (2008).
    [29] ASTM E2611-09, “Standard test method for measurement of normal incidence sound transmission of acoustical materials based on the transfer matrix method”, American Society for Testing and Materials (2009).
    [30] C. H. Chen, “Wave propagation of a thin plate with local resonators”, thesis, National Cheng Kung University, Tainan, Taiwan (2015).

    下載圖示 校內:2021-08-31公開
    校外:2021-08-31公開
    QR CODE