| 研究生: |
葉奕辰 Yeh, Yi-Chen |
|---|---|
| 論文名稱: |
雙層薄膜耦合結構附加環形質量之聲音穿透分析:實驗分析 Sound Transmission of Coupled Membrane-Ring Structure : Experiment Analysis |
| 指導教授: |
陳蓉珊
Chen, Jung-San |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 聲學實驗 、超穎材料 、穿透損失 、環形質量 |
| 外文關鍵詞: | Acoustic experiment, Metamaterial, Transmission loss, Ring mass |
| 相關次數: | 點閱:92 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,學者們發現聲學薄膜型超穎材料能有效的阻隔低頻聲音傳遞,並廣泛的延伸探討。本文中我們設計了一個新穎的結構,稱之為coupled membrane structure,並利用阻抗管與有限元素軟體分析其穿透損失。相較於單一層的超穎材料,此結構能產生新的穿透損失波谷與兩個峰值。此外,我們也探討了製程溫度與空氣層的影響。實驗結果與模擬結果相互吻合。
In recent years, the emergence of membrane-type acoustic metamaterial, which has been a subject of widely-extended discussion, provides a novel way to isolate the low-frequency noise. In this study, I fabricated a novel structure called coupled membrane structure which is comprised of two membrane-type metamaterials. I used the acoustic impedance tube and Comsol Multiphysics, a finite element analysis software package, to examine its transmission loss (TL). Compared to the single-layer metamaterial, an extra TL peak and valley are occurred. I also discovered that the effect of the thermal-curing temperature and air spacing on the TL curves. A good agreement between experiment and simulation is achieved.
[1] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures”, Phys. Rev. Lett. 76, 4773-4776 (1996).
[2] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity”, Phys. Rev. Lett. 84, 4184-4187 (2000).
[3] H. Chen, B. I. Wu, B. Zhang, and J. A. Kong “Electromagnetic wave interactions with a metamaterial cloak”, Phys. Rev. Lett. 99, 063903 (2007).
[4] J. B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966-3969 (2000).
[5] J. Li and C. T. Chan, “Double-negative acoustic metamaterial”, Phys. Rev. E 70, 055602 (2004).
[6] S. S. Mester and H. Benaroya, “Periodic and near-periodic structures”, Shock. Vib. 2, 69-95 (1995).
[7] D. J. MEAD, “Wave propagation in continuous periodic structures: research contributions from Southampton”, J. Sound Vib. 190, 495-524 (1996).
[8] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials”, Sci. 289, 1734-1736 (2000).
[9] P. A. Deymier, “Acoustic metamaterials and phononic crystals”, Springer (2013).
[10] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kima, “Acoustic metamaterial with negative density”, Phys. Lett. A 373, 4464-4469 (2009).
[11] B. Sharma, C.T. Sun, “Acoustic metamaterial with negative modulus and a double negative structure”, arXiv:1501.02833 (2015).
[12] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “Composite acoustic medium with simultaneously negative density and modulus”, Phys. Rev. Lett. 104, 054301 (2010).
[13] N. Fang, D. Xi, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, “Ultrasonic metamaterials with negative modulus”, Nat. mater. 5, 452-456(2006).
[14] D. Torrent and J. Sánchez-Dehesa, “Anisotropic mass density by radially periodic fluid structures”, Phys. Rev. Lett. 105, 174301 (2010).
[15] I. Spiousas, D. Torrent, and J. Sánchez-Dehesa, “Experimental realization of broadband tunable resonators based on anisotropic metafluids”, Appl. Phys. Lett. 98, 244102 (2011).
[16] Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, “Membrane-type acoustic metamaterial with negative dynamic mass”, Phys. Rev. Lett. 101, 204301 (2008).
[17] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials”, Appl. Phys. Lett. 108, 114905 (2010).
[18] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses”, Appl. Phys. Lett. 110, 124903 (2011).
[19] Y. G. Zhang , J. H. Wen, Y. Xiao, X. S. Wen, and J. W. Wanga, “Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials”, Phys. Lett. A 376, 1489-1494 (2012).
[20] G. C. Ma, “Membrane-type acoustic metamaterials”, thesis, Hong Kong University of science and technology, Hong Kong, China (2012).
[21] G. C. Ma, M. Yang, Z. Y. Yang, and P. Sheng, “Acoustic double negativity with coupled-membrane metamaterial”, Acoust. Soc. Am. 19, 065039 (2013).
[22] M. Yang, G. C. Ma, Z. Y. Yang, and P. Sheng, “Coupled membranes with doubly negative mass density and bulk modulus”, Phys. Rev. Lett. 110, 134301 (2013).
[23] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Scaling of membrane-type locally resonant acoustic metamaterial arrays”, J. Acoust. Soc. Am. 132, 2784-2792 (2012).
[24] F. Langfeldt, J. Riecken, W. Gleine, and O. von Estorff, “A membrane-type acoustic metamaterial with adjustable acoustic properties”, J. sound Vib. 373, 1-18 (2016).
[25] M. L. Munjal, “Noise and vibration control”, World Scientific (2013).
[26] M. Howe, “Acoustics and aerodynamic sound”, Cambridge University Press (2015).
[27] C. E. Wilson, “Noise control: measurement, analysis, and control of sound and vibration”, Krieger (1989).
[28] M. L. Dong, “The research on sound transmission loss measuring system of acoustic material”, thesis, Shanghai Jiao Tong University, Shanghai, China (2008).
[29] ASTM E2611-09, “Standard test method for measurement of normal incidence sound transmission of acoustical materials based on the transfer matrix method”, American Society for Testing and Materials (2009).
[30] C. H. Chen, “Wave propagation of a thin plate with local resonators”, thesis, National Cheng Kung University, Tainan, Taiwan (2015).