簡易檢索 / 詳目顯示

研究生: 董宛儒
Tung, Wan-Ju
論文名稱: 以磁控濺鍍法製作之氧化鎵鋅薄膜特性及其元件之應用
Investigation of Gallium Zinc Oxide Thin Film Fabricated by RF Sputtering System and Their Applications
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 74
中文關鍵詞: 氧化鎵鋅光檢測器光電晶體薄膜電晶體
外文關鍵詞: GaZnO, Photodetector, Phototransistor, Thin Film Transistor
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用射頻磁控濺鍍法沉積氧化鎵鋅薄膜,討論在不同製程條件下薄膜的特性,並將這些薄膜作為主動層應用於紫外光檢測器及薄膜電晶體,進行分析與討論其特性。
    首先以磁控濺鍍法在不同的製程條件下沉積氧化鎵鋅薄膜,並從三方向去討論氧化鎵鋅薄膜特性,分別是薄膜結構特性、薄膜光學特性及薄膜表面和縱深分析。在結構特性上,氧化鎵鋅薄膜表面緻密且隨溫度上升有晶相產生。而在光學特性的部分,由於鎵的能隙極大,有鎵成份存在於薄膜,使得氧化鎵鋅薄膜成為一種寬能隙的材料,主要吸收紫外光波段,並且其於實驗顯示薄膜在可見光區有80%的穿透率,可知氧化鎵鋅薄膜是一種寬能隙且高穿透的材料。此外,從X射線光電子能譜(XPS)圖得知,薄膜之中的氧空缺會由於製程中氧氣通入量有所變動而有最佳參數。
    實驗的第二部分是將氧化鎵鋅應用於光檢測器,改變退火的溫度和濺鍍通氧流量,比較其特性差異。當退火溫度提高和適當的通氧流量時,能有效的抑制暗電流。在退火五百度及氧氣流量比例為1%的情況下,元件的暗電流為1.54 × 10-11安培,亮暗電流比為1.12 × 107,響應拒斥比為5.44×105。
    實驗的第三部分是使用二氧化矽做為氧化鎵鋅薄膜電晶體的閘極介電層,並且藉由濺鍍通氧流量以及退火環境的改變,來找出薄膜電晶體最佳參數。在濺鍍氧氣流量比例為8%及氧氣退火三百度一小時的情況下,得到場效電子遷移率為0.93 cm2/V∙s,臨界電壓為0.67 V,次臨界擺幅為0.8 V/dec,ON/OFF電流比為105。本文也將薄膜電晶體延伸應用為光電晶體,在偏壓-5V的情況下可得到響應拒斥比為6.28×105。此外,我們把氧化鎵鋅薄膜電晶體的鋁電極替換成氧化銦錫電極,做成全透明的薄膜電晶體。

    In this thesis, gallium zinc oxide (GaZnO) is deposited by RF magnetron sputtering and the films’ properties are discussed thoroughly under different processing ambiences. Next, we will apply GaZnO thin films in photodetectors, thin film transistors and phototransistors. The properties of the devices are discussed in detail.
    First, we utilize the RF-sputtering system to grow thin-films with different conditions and the films’ properties are research into three aspects which are structural, optical, and surface/depth element analysis. Thin films are amorphous as-deposited and the crystalline phase gradually appears with the increasing of annealing temperatures. For the optical analysis, owing to the large bandgap of gallium, GaZnO thin films could be used as wide bandgap material, absorbing ultraviolet light. Furthermore, the transmittance can achieve more than 80% in the visible region. The XPS shows that the oxygen vacancies will be affect by the oxygen flow ratio. For surface/depth element analysis, we can observe the smooth surface of the films through AFM measurement. The smooth surface of the films leads to lower surface density of states, which is beneficial for the performance of the devices.
    In the second part of the experiment, GaZnO photodetectors were fabricated by radio frequency magnetron sputtering on quartz substrates. The films’ Ga content were relatively high to enlarge the bandgap and obtain low dark current. In addition, it was found that the devices’ performance was significantly improved by proper gas flow ratios of O2/Ar during deposition and post-annealing temperature. With oxygen ratio 1% annealed at 500 for one hour, the on-off current ratio of sample was ~107, the responsivity reached 16.08 A/W and the UV-to-visible rejection ratio was 5.44×105.
    In the third part, GaZnO TFTs are realized. Manipulation of oxygen flow ratios is conducted to find the optimized TFTs. The best features would be presented as the sputtering oxygen flow rate controlled at 8% to properly compensate the oxygen vacancies. Compared with post-annealed in air, annealing in O2 showed better characteristics. With the optimized conditions, the transistor could exhibit an on-off ratio of five orders of magnitude, mobility of 0.93 cm2/V∙s and SS of 0.8 V/dec. Our results broaden the applicability of GaZnO TFTs to photodetectors. When a negative gate bias was applied, the optimized GaZnO phototransistor exhibited fine photo properties. With an UV light wavelength of 280 nm and an applied gate bias of -5 V, the measured responsivity of the device was 0.84 A/W, and the UV-to-visible rejection ratio was 6.28×105. The results indicate that the fabricated device is suitable for solar-blind photodetectors. In addition, we fabricated fully transparent thin film phototransistor by replacing aluminum electrode with ITO electrode and its UV-to-visible rejection ratio was 1.7×103.

    Abstract (Chinese) I Abstract (English) IIII 誌謝 VI Contents VII Table Captions X Figure Captions XI Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Background of GaZnO Material 2 1.3 Overview of UV Photodetector 3 1.4 Overview of Thin Film Transistor 4 1.5 Organization of The Thesis 5 References 6 Chapter 2. Relevant Theory and Experimental Equipment 9 2.1 Theory of Photodetector 9 2.1.1 Responsivity of the Phototransistor 10 2.2 Theory of Thin Film Transistor 10 2.2.1 Field-Effect Mobility 12 2.2.2 Threshold Voltage (VT) 13 2.2.3 On/off Current Ratio (Ion/Ioff) 13 2.2.4 Subthreshold Swing (SS) 14 2.2.5 Interface Trap Density (Nt) 14 2.3 Experimental Equipment 15 2.3.1 RF Sputtering System 15 2.3.2 X-ray Diffraction Analysis 17 2.3.3 Atomic Force Microscopes 20 2.3.4 Energy-Dispersive X-ray Spectroscopy (EDS) 21 2.3.5 X-ray Photoelectron Spectroscopy 22 2.3.6 Measurement Systems 23 References 24 Chapter 3. Characteristics of GaZnO Thin Film 26 3.1 Growth of GaZnO Thin Film 26 3.2 X-ray Diffraction (XRD) Analysis 27 3.3 AFM Analysis 28 3.4 Optical Characteristics 30 3.5 FIB & EDS Analysis 33 3.6 X-ray Photoelectron Spectroscopy (XPS) Analysis 35 Chapter 4. Fabrication and Characteristics of GaZnO MSM Photodetector 37 4.1 Introduction 37 4.2 Fabrication of GaZnO MSM Photodetector 38 4.3 Characteristics of GaZnO MSM Photodetector 40 4.4 The Summary of GaZnO MSM Photodetector 47 References 49 Chapter 5. Fabrication and Characteristics of GaZnO Thin Film Transistor 52 5.1 Introduction 52 5.2 Fabrication and Measurement of GaZnO Thin Film Transistor 53 5.3 Electrical Properties of the GaZnO Thin Film Transistor 55 5.4 Electrical Properties of the GaZnO Phototransistors 60 5.5 Electrical Properties of the GaZnO Fully Transparent Phototransistors 64 5.6 The Summary of GaZnO Thin Film Transistors 68 References 69 Chapter 6. Conclusion and Future Work 71 6.1 Conclusion 71 6.2 Future Work 73

    Chapter1
    [1] H. Ohta and H. Hosono, “Transparent oxide optoelectronics,” Mater. Today, vol. 7, no. 6, pp. 42–51, 2004.
    [2] J. F. Wager, “Transparent Electronics,” Science (80-. )., vol. 300, no. 5623, p. 1245 LP-1246, May 2003.
    [3] Ü. Özgür et al., “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, no. 4, p. 41301, Aug. 2005.
    [4] D.-J. Yun and S.-W. Rhee, “Deposition of Al-doped ZnO thin-films with radio frequency magnetron sputtering for a source/drain electrode for pentacene thin-film transistor,” Thin Solid Films, vol. 517, no. 16, pp. 4644–4649, 2009.
    [5] A. Hafdallah, F. Yanineb, M. S. Aida, and N. Attaf, “In doped ZnO thin films,” J. Alloys Compd., vol. 509, no. 26, pp. 7267–7270, 2011.
    [6] H. Joen, V. P. Verma, S. Hwang, S. Lee, C. Park, D. H. Kim, W. Choi, and M. Jeon, “Characteristics of Gallium-Doped Zinc Oxide Thin-Film Transistors Fabricated at Room Temperature Using Radio Frequency Magnetron Sputtering Method,” Jpn. J. Appl. Phys., vol. 47, no. 1R, p. 87, 2008.
    [7] J. Y. Li, S. P. Chang, M. H. Hsu, and S. J. Chang, “Photo-Electrical Properties of MgZnO Thin-Film Transistors With High- ${k}$ Dielectrics,” IEEE Photonics Technol. Lett., vol. 30, no. 1, pp. 59–62, 2018.
    [8] C.-Y. Tsay, H.-C. Cheng, Y.-T. Tung, W.-H. Tuan, and C.-K. Lin, “Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol–gel method,” Thin Solid Films, vol. 517, no. 3, pp. 1032–1036, 2008.
    [9] J. Zhao, X. W. Sun, and S. T. Tan, “Bandgap-Engineered Ga-Rich GaZnO Thin Films for UV Transparent Electronics,” IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 2995–2999, 2009.
    [10] Z. Alaie, S. Mohammad Nejad, and M. H. Yousefi, “Recent advances in ultraviolet photodetectors,” Mater. Sci. Semicond. Process., vol. 29, no. Supplement C, pp. 16–55, 2015.
    [11] J. Kim et al., “Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor,” Npg Asia Mater., vol. 9, p. e359, Mar. 2017.
    [12] Y. H. Liu, S. J. Young, L. W. Ji, and S. J. Chang, “Ga-Doped ZnO Nanosheet Structure-Based Ultraviolet Photodetector by Low-Temperature Aqueous Solution Method,” IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 2924–2927, 2015.
    [13] L. Sang, M. Liao, and M. Sumiya, “A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures,” Sensors, vol. 13, no. 8, pp. 10482–10518, 2013.
    [14] B. L. Diffey, “Sources and measurement of ultraviolet radiation,” Methods, vol. 28, no. 1, pp. 4–13, 2002.
    [15] E. M. and E. M. and J. L. P. and F. C. and F. O. and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter, vol. 13, no. 32, p. 7115, 2001.
    [16] S. R. A., “Thin‐Film Transistors,” Adv. Mater., vol. 21, no. 20, pp. 2007–2022, May 2009.
    [17] R. Navamathavan et al., “Effects of Electrical Bias Stress on the Performance of ZnO -Based TFTs Fabricated by RF Magnetron Sputtering,” J. Electrochem. Soc. , vol. 153, no. 5, pp. G385–G388, May 2006.
    [18] Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, “Effect of Zr addition on ZnSnO thin-film transistors using a solution process,” Appl. Phys. Lett., vol. 97, no. 23, p. 233502, Dec. 2010.
    [19] D.-H. Son, D.-H. Kim, J.-H. Kim, S.-J. Sung, E.-A. Jung, and J.-K. Kang, “Low Voltage, High Performance Thin Film Transistor with HfInZnO Channel and HfO2 Gate Dielectric,” Electrochem. Solid-State Lett. , vol. 13, no. 8, pp. H274–H277, Aug. 2010.
    [20] A. Suresh and J. F. Muth, “Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors,” Appl. Phys. Lett., vol. 92, no. 3, p. 33502, Jan. 2008.
    [21] J. Yao et al., “Electrical and Photosensitive Characteristics of a-IGZO TFTs Related to Oxygen Vacancy,” IEEE Trans. Electron Devices, vol. 58, no. 4, pp. 1121–1126, 2011.
    Chapter2
    [1] W. T. Wu, “Investigation of Indium Titanium Zinc Oxide Thin Film Transistors Fabricated by RF Sputtering System and Their Optoelectronic Application,” Master's Thesis of Department of Electrical Engineering, National Cheng Kung University, 74 pp, 2017.
    [2] C. I. Hsieh, “Investigation of P-type Tin Oxide Thin Film Transistors Fabricated by DC Sputtering System and Its Applications,” Master's Thesis of Department of Electrical Engineering, National Cheng Kung University, 75 pp, 2017.
    [3] C. S. Choi, H. S. Kang, W. Y. Choi, H. J. Kim, W. J. Choi, D. J. Kim, K. Jang, T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors, vol. 9, pp. 6504–6529, 2009.
    [4] Hwang, S., Lee, J. H., Woo, C. H., Lee, J. Y., & Cho, H. K. (2011). Effect of annealing temperature on the electrical performances of solution- processed InGaZnO thin film transistors. Thin Solid Films, 519(15), 5146-5149.
    [5] Streetman, Ben G. and Sanjay Banerjee, Noise in Solid State Devices and Circuits. New Jersey: Prentice Hall, 1986.
    [6] D. C. Reynolds, D. C. Look, B. Jogai, C.W. Litton, T. C. Collins, W. Harsch, and G. Cantwell, “Neutral-donor–bound-exciton complexes in ZnO crystals,” Phys. Rev. B, vol. 57, pp. 12151–12155, 1998.
    [7] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, “AlxGa1-xN:Si Schottky barrier photodiodes with fast response and high detectivity,” Appl. Phys. Lett., vol. 73, pp. 2146–2148, 1998.
    [8] Donald A. Neamen, Semiconductor Physics and Devices: Basic Principles, 3/e. New York: McGraw-Hill, 2003.
    [9] J. L. Vossen and W. Kern, Thin Flim Processes. New York: Academic Press, 1978.
    [10] C. Y. Chang and S. M. Sze, ULSI Technology. New York: McGraw-Hill, 1996.
    [11] S. I. Shah, Handbook of Thin Film Process Technology. London: Institute of Physics Pub, 1995.
    [12] L. Y. Chang, “Investigation of Indium Gallium Oxide Thin Film Fabricated by RF Sputtering System and Their Applications,” Master's Thesis of Department of Electrical Engineering, National Cheng Kung University, 98 pp, 2017.
    Chapter4
    [1] L. Sang, M. Liao, and M. Sumiya, “A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures,” Sensors, vol. 13, no. 8, pp. 10482–10518, 2013.
    [2] M. Razeghi, “Short-wavelength solar-blind detectors-status, prospects, and markets,” Proc. IEEE, vol. 90, no. 6, pp. 1006–1014, 2002.
    [3] Z. H. Wu, L. X. Qian, T. Sheng, Y. Y. Zhang, and X. Z. Liu, “Solar-blind deep-ultraviolet photodetector based on the -Ga2O3 thin film grown on annealed c-plane sapphire substrate,” in 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2016, pp. 82–85.
    [4] Z. Alaie, S. Mohammad Nejad, and M. H. Yousefi, “Recent advances in ultraviolet photodetectors,” Mater. Sci. Semicond. Process., vol. 29, no. Supplement C, pp. 16–55, 2015.
    [5] Y. H. Liu, S. J. Young, L. W. Ji, and S. J. Chang, “Ga-Doped ZnO Nanosheet Structure-Based Ultraviolet Photodetector by Low-Temperature Aqueous Solution Method,” IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 2924–2927, 2015.
    [6] J. Kim et al., “Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor,” Npg Asia Mater., vol. 9, p. e359, Mar. 2017.
    [7] J. Zhao, X. W. Sun, and S. T. Tan, “Bandgap-Engineered Ga-Rich GaZnO Thin Films for UV Transparent Electronics,” IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 2995–2999, 2009.
    [8] L. C. Yang et al., “Effects of annealing temperature on the characteristics of Ga-doped ZnO film metal-semiconductor-metal ultraviolet photodetectors,” J. Appl. Phys., vol. 113, no. 8, p. 84501, Feb. 2013.
    [9] P. Sharma, R. Singh, V. Awasthi, S. K. Pandey, V. Garg, and S. Mukherjee, “Detection of a high photoresponse at zero bias from a highly conducting ZnO:Ga based UV photodetector,” RSC Adv., vol. 5, no. 104, pp. 85523–85529, 2015.
    [10] T. Omata, N. Ueda, K. Ueda, and H. Kawazoe, “New ultraviolet‐transport electroconductive oxide, ZnGa2O4 spinel,” Appl. Phys. Lett., vol. 64, no. 9, pp. 1077–1078, Feb. 1994.
    [11] J. D. Hwang and Y. C. Chang, “Enhancing the Ultraviolet/Visible Rejection Ratio of MgxZn1-xO Metal-Semiconductor-Metal Photodetectors Using Oxygen-Plasma Treatment,” IEEE Trans. Electron Devices, vol. 64, no. 8, pp. 3234–3238, 2017.
    [12] L. Huang et al., “Comparison Study of -Ga2O3 Photodetectors Grown on Sapphire at Different Oxygen Pressures,” IEEE Photonics J., vol. 9, no. 4, pp. 1–8, 2017.
    [13] J. Y. Li, S. P. Chang, H. H. Lin, and S. J. Chang, “High Responsivity MgxZn1-xO Film UV Photodetector Grown by RF Sputtering,” IEEE Photonics Technol. Lett., vol. 27, no. 9, pp. 978–981, 2015.
    [14] A. Singh Pratiyush et al., “High responsivity in molecular beam epitaxy grown -Ga2O3 metal semiconductor metal solar blind deep-UV photodetector,” Appl. Phys. Lett., vol. 110, no. 22, p. 221107, May 2017.
    [15] C.-Y. Huang, R.-H. Horng, D.-S. Wuu, L.-W. Tu, and H.-S. Kao, “Thermal annealing effect on material characterizations of -Ga2O3 epilayer grown by metal organic chemical vapor deposition,” Appl. Phys. Lett., vol. 102, no. 1, p. 11119, Jan. 2013.
    [16] T. H. Chang, S. J. Chang, W. Y. Weng, C. J. Chiu, and C. Y. Wei, “Amorphous Indium-Gallium-Oxide UV Photodetectors,” IEEE Photonics Technol. Lett., vol. 27, no. 19, pp. 2083–2086, 2015.
    [17] S. Lany and A. Zunger, “Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors,” Phys. Rev. B, vol. 72, no. 3, p. 35215, Jul. 2005.
    Chapter5
    R. A. Street, “Thin‐Film Transistors,” Adv. Mater., vol. 21, no. 20, pp. 2007–2022, May 2009.
    [2] H. Ohta and H. Hosono, “Transparent oxide optoelectronics,” Mater. Today, vol. 7, no. 6, pp. 42–51, 2004.
    [3] N. Munzenrieder, K. H. Cherenack, and G. Troster, “The Effects of Mechanical Bending and Illumination on the Performance of Flexible IGZO TFTs,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 2041–2048, 2011.
    [4] D.-J. Yun and S.-W. Rhee, “Deposition of Al-doped ZnO thin-films with radio frequency magnetron sputtering for a source/drain electrode for pentacene thin-film transistor,” Thin Solid Films, vol. 517, no. 16, pp. 4644–4649, 2009.
    [5] C.-Y. Tsay, H.-C. Cheng, Y.-T. Tung, W.-H. Tuan, and C.-K. Lin, “Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol–gel method,” Thin Solid Films, vol. 517, no. 3, pp. 1032–1036, 2008.
    [6] Y. S. Shen, W. K. Wang, and R. H. Horng, “Characterizations of Metal-Oxide-Semiconductor Field-Effect Transistors of ZnGaO Grown on Sapphire Substrate,” IEEE J. Electron Devices Soc., vol. 5, no. 2, pp. 112–116, 2017.
    [7] W. J. Park et al., “Investigation on doping dependency of solution-processed Ga-doped ZnO thin film transistor,” Appl. Phys. Lett., vol. 93, no. 8, p. 83508, Aug. 2008.
    [8] H. Joen, V. P. Verma, S. Hwang, S. Lee, C. Park, D. H. Kim, W. Choi, and M. Jeon, “Characteristics of Gallium-Doped Zinc Oxide Thin-Film Transistors Fabricated at Room Temperature Using Radio Frequency Magnetron Sputtering Method,” Jpn. J. Appl. Phys., vol. 47, no. 1R, p. 87, 2008.
    [9] V. P. Verma, D.-H. Kim, H. Jeon, M. Jeon, and W. Choi, “Characteristics of low doped gallium-zinc oxide thin film transistors and effect of annealing under high vacuum,” Thin Solid Films, vol. 516, no. 23, pp. 8736–8739, 2008.
    [10] D. Han et al., “Transparent gallium doped zinc oxide thin-film transistors fabricated on glass substrate,” Thin Solid Films, vol. 594, pp. 266–269, 2015.
    [11] J. Kim et al., “Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor,” Npg Asia Mater., vol. 9, p. e359, Mar. 2017.
    [12] J. Zhao, X. W. Sun, and S. T. Tan, “Bandgap-Engineered Ga-Rich GaZnO Thin Films for UV Transparent Electronics,” IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 2995–2999, 2009.
    [13] C.S. Fuh, S. M. Sze, P.T. Liu, L.F. Teng, and Y.T. Chou, “Role of environmental and annealing conditions on the passivation-free in-Ga–Zn–O TFT,” Thin Solid Films, vol. 520, no. 5, pp. 1489–1494, 2011.

    無法下載圖示 校內:2023-06-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE