| 研究生: |
歐采瑀 Ou, Cai-Yu |
|---|---|
| 論文名稱: |
由品質與空間統計觀點提升統計區資料之智慧分析與視覺化 Enhancing the Intelligence of Statistical Areal Data Analysis and Visualization: Quality and Spatial Statistics Perspectives |
| 指導教授: |
洪榮宏
Hong, Jung-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 統計地圖 、統計區 、社會經濟資料 、MAUP |
| 外文關鍵詞: | statistical map, statistical area, Socioeconomic data, MAUP |
| 相關次數: | 點閱:74 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
社會經濟資料為人為活動所產生,原始資料普遍隱含個資資訊,因此常以統計的形式公開,過去統計資料以文數字方式記錄,缺乏直接的空間意涵,透過地理資訊技術可將統計資料與空間資料以識別資訊進行關聯,賦予統計資料以空間位置進行描述,建立主題地圖。隨著對位技術與服務的發展,個體資料已可進行更準確的位置定位,因此,統計資料的階層不再侷限於以往之行政區範圍,更可細緻到街廓之小統計單元,稱之為統計區統計。
而社會經濟資料多數以地址登記為主,因此,本研究探討地址登記資料製作統計區統計可能面臨之判斷與必要之建立程序,資料生產者須具備地理資訊專業建立統計區資訊,而資料分析者在取得統計區資訊後往往相信資料為真的且基礎於既有之統計單元階層架構下進行資料分析和衍伸運算。上述過程,從資料生產到資訊應用,統計區資訊的資料品質、地理不平等、資料運作的正確性議題常被忽略,故統計區統計在推動上常面臨資料處理、製作、分享、衍伸運算之困難。
因此,本研究提出「智慧型統計區統計資訊運作機制」,透過智慧型整合系統納入領域知識建立統計區資訊製作專業程序,解決資料生產者面臨之空間化與統計區資料處理之技術門檻,讓資料生產者上傳資料後即可自動化完成統計區資訊,資訊建立的過程導入品質與空間觀點之強化指標,透過統計區識別資訊標準之建立,正確串連不同領域統計區資訊之機制並提供地理不平等現象之正確解讀與視覺化分析策略,藉此達到正確運作統計區資訊之目的,提升統計區資訊之智慧化與視覺化展示。本研究之應用發展將可為國家級社會經濟資料空間發展之跨領域應用提供創新且極具潛力之發展方向。
Creating an area by spatial partitioning to describe local phenomena is a common skill in the geographic information system (GIS), and past statistics publish in the district regularly.With the development of GIS and geocoding services, the individual data can be located accurately. Therefore, the statistical data class is no longer limited to the administrative district, but also meticulous to the small statistical area, called “statistical areal data”.
Therefore, the study proposes “intelligent statistical areal data operation mechanism”, through the intelligent integration system to establish statistical areal data accurately with professional procedures. Data producers complete statistical areal data automatically via uploading individual data through the system. The process of producing statistical areal data not only reduce the spatial operating threshold but also contain enhanced-quality indicators to providing a correct interpretation and visualization analysis of geographical inequality. The results of the statistical areal data named by identification information standards that the study proposed. This operational mechanism can correctly link different fields of data and provide different statistical areal map visualization from the traditional.
Borah, B., & Bhattacharyya, D. (2004). An improved sampling-based DBSCAN for large spatial databases. Paper presented at the Intelligent Sensing and Information Processing, 2004. Proceedings of International Conference on.
Cayo, M. R., & Talbot, T. O. (2003). Positional error in automated geocoding of residential addresses. International Journal of Health Geographics, 2(1), 10.
Clarke, J. I. (1959). Statistical map-reading. Geography, 44(2), 96-104.
Dark, S. J., & Bram, D. (2007). The modifiable areal unit problem (MAUP) in physical geography. Progress in Physical Geography, 31(5), 471-479.
Davis, C. A., & Fonseca, F. T. (2007). Assessing the certainty of locations produced by an address geocoding system. Geoinformatica, 11(1), 103-129.
Doyle, A., Reed, C., Harrison, J., & Reichardt, M. (2001). Introduction to OGC web services. White Paper. OGC.
Eagleson, S., Escobar, F., & Williamson, I. (2002). Hierarchical spatial reasoning theory and GIS technology applied to the automated delineation of administrative boundaries. Computers, Environment and Urban Systems, 26(2), 185-200.
Erl, T. (2005). Service-oriented architecture (SOA): concepts, technology, and design: Prentice Hall.
Flannigan, M., & Harrington, J. B. (1988). A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953–80). Journal of Applied Meteorology, 27(4), 441-452.
Fu, P., & Sun, J. (2010). Web GIS: principles and applications: Esri Press.
Ge, X. (2005). Address geocoding: Google Patents.
Gregory, I. N., & Ell, P. S. (2005). Breaking the boundaries: geographical approaches to integrating 200 years of the census. Journal of the Royal Statistical Society: Series A (Statistics in Society), 168(2), 419-437.
Hawala, S., Zayatz, L., & Rowland, S. (2004). American factfinder: Disclosure limitation for the advanced query system. Journal of Official Statistics, 20(1), 115.
Hollander, J. B. (2010). Moving toward a shrinking cities metric: Analyzing land use changes associated with depopulation in Flint, Michigan. Cityscape, 133-151.
Kraak, M.-J. (2004). The role of the map in a Web-GIS environment. Journal of Geographical Systems, 6(2), 83-93. doi: 10.1007/s10109-004-0127-2
Krieger, N. (1992). Overcoming the absence of socioeconomic data in medical records: validation and application of a census-based methodology. American journal of public health, 82(5), 703-710.
Luo, W., & Wang, F. (2003). Measures of spatial accessibility to health care in a GIS environment: synthesis and a case study in the Chicago region. Environment and Planning B: Planning and Design, 30(6), 865-884.
Marceau, D. J. (1999). The scale issue in the social and natural sciences. Canadian Journal of Remote Sensing, 25(4), 347-356.
Meyer, M. A., Broome, F. R., & Schweitzer Jr, R. H. (1975). Color statistical mapping by the US Bureau of the Census. The American Cartographer, 2(2), 101-117.
Openshaw, S. (1996). Developing GIS-relevant zone-based spatial analysis methods. Spatial analysis: modelling in a GIS environment, 55-73.
Openshaw, S., & Openshaw, S. (1984). The modifiable areal unit problem.
Ordanini, A., & Pasini, P. (2008). Service co-production and value co-creation: The case for a service-oriented architecture (SOA). European Management Journal, 26(5), 289-297.
Ratcliffe, J. H. (2001). On the accuracy of TIGER-type geocoded address data in relation to cadastral and census areal units. International Journal of Geographical Information Science, 15(5), 473-485.
Stafford, M., Duke-Williams, O., & Shelton, N. (2008). Small area inequalities in health: are we underestimating them? Social science & medicine, 67(6), 891-899.
Stiller, C., Kroll, M., Boyle, P., & Feng, Z. (2008). Population mixing, socioeconomic status and incidence of childhood acute lymphoblastic leukaemia in England and Wales: analysis by census ward. British journal of cancer, 98(5), 1006.
Tobler, W. R. (1973). Choropleth maps without class intervals? Geographical analysis, 5(3), 262-265.
Weichselbaum, J., Petrini-Monteferri, F., Papathoma, M., Wagner, W., & Hackner, N. (1970). Sharpening census information in GIS to meet real-world conditions: The case for Earth observation (Vol. 84): WIT Press.
Zimmerman, D. L., Fang, X., Mazumdar, S., & Rushton, G. (2007). Modeling the probability distribution of positional errors incurred by residential address geocoding. International Journal of Health Geographics, 6(1), 1.
朱子豪, 孫志鴻, & 蔡博文. (1989). 內政部地理資訊應用之研究--戶口普查資料運用檢討與規劃: 內政部資訊中心委託研究計晝.
吳焄雯. (2013). 社會經濟資料地理空間化之整合與服務. [Geospatial Integration and Services of Socio-Economic Data]. 中國統計學報, 51(2), 197-210.
林季平, 王永慈, 周愫嫻, & 溫在弘. (2008). 社會發展政策統計與調查資料庫規劃.
林美君. (2011). 多層多類分區密度之空間人口重分布模式. 臺灣大學生物環境系統工程學研究所學位論文, 1-99.
林美君, 蘇明道, 蔡博文, 陳敬宏, & 劉惠玲. (2012). 統計區分類系統在洪災事件之人口暴露量推估. 農業工程學報, 58(3), 40-49.
翁培文, & 蔡博文. (2006). 空間離散指標:舊觀念、新公式. [Spatial Dispersion Index: Old Conception, New Formula]. 臺灣地理資訊學刊(4), 1-12.
榮峻德. (2005). 普查資料之空間資料挖掘研究—以台北市便利商店區位分析為例. 臺灣大學地理環境資源學研究所學位論文, 1-113.
蔡博文, 蘇明道, 周學政, & 林季平. (2008). 統計區建置計畫整體規劃暨試作成果報告書.