| 研究生: |
鄺子薇 Kuang, Zei-Wei |
|---|---|
| 論文名稱: |
礦物膠囊製程開發及其對Sr、Cs離子吸附性質之研究 Fabrication of sodium aluminosilicate encapsulation of mordenite for the decontamination of strontium and Cesium ions. |
| 指導教授: |
吳毓純
Wu, Yu-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 鋁矽膠囊 、溶膠-凝膠法 、吸附反應 、鍶離子 、銫離子 、離子競爭 、離子封存 |
| 外文關鍵詞: | capsules, adsorption, mordenite, ion competition, Cs+ ion, Sr2+ ion |
| 相關次數: | 點閱:124 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以溶膠-凝膠法成功製成鋁矽基質膠囊,將其應用於吸附核廠冷卻水中核種元素—Sr離子。本研究探討鋁矽系統中Al離子配位數、Na離子摻雜量及比表面積變化,對Sr離子吸附效率的影響。由NMR、EDXS、BET及批次吸附試驗結果得知,當結構中Al離子產生六配位數、陽離子摻雜量高皆有助於核種離子與膠囊材料進行離子交換,進而提高陽離子交換效率。
本研究第二部份則是將對Cs離子具有高吸附特性的天然絲光沸石,以吸附效率最高的膠囊(N1A1S1)包覆製成礦物膠囊。經吸附試驗結果與性質分析後,Sr離子吸附效率隨著礦物包覆量增加而降低,而Cs離子吸附效果則不受膠囊包覆影響。並將樣品進行Sr、Cs離子的離子競爭吸附試驗,在離子競爭下,N1A1S1膠囊對Sr離子的吸附效果可達95.8 mg/g,而若以同時去除Cs與Sr離子為目標,礦物膠囊N1A1S1_50樣品可作為雙離子吸附劑,其對Sr與Cs之吸附量分別可達68.9 mg/g與150.1 mg/g。吸附完成的礦物膠囊廢料,經高溫處理,得一無孔隙且具鍶鈉長石晶相結構之產物,有效達到離子封存之效果。
This study is devoted to developing a new type of encapsulating material applied for the decontamination of Sr2+ and Cs+ ions. Sodium aluminosilicate (NAS) xerogel was prepared via sol–gel process and will serve as encapsulating material to enclose natural mordenite powders. The as-obtained NAS xerogel exhibits slit-like shaped pores and a specific surface area of 46.3 m2/g. The batch experimental results show that NAS xerogel having adsorption effect for both Sr2+ and Cs+ ions and the uptake efficiency reached 72.7 mg/g and 117.4 mg/g, respectively. In the binary ionic environment, the uptake efficiency further increases to 95.8 mg/g and 126.3 mg/g for Sr2+ and Cs+ ions respectively.
In the second part of this study, NAS xerogel was used to enclose 50 wt.% of natural mordenite powders (NAS_50). Batch experimental results show that the overall specific surface area increased from 46.3 m2/g to 103.0 m2/g due to the highly porous feature of mordenite. The mordenite capsule showed that the overall uptake efficiency for Sr2+ ions slightly decreased from 72.7 mg/g down to 47.2 mg/g because of the low selective adsorption capability to Sr2+ of mordenite. Nevertheless, the coexistence of Sr2+ and Cs+ in solution still allows increasing the adsorption capacity up to 68.9 mg/g and 150.1mg/g for Sr2+ and Cs+, respectively.
Finally, NAS xerogel was again heat-treated up to 1300°С for 2 hours to carry out the ionic immobilization. The adsorbed Sr2+ ion was immobilized in NAS structure by forming Sr-feldspar phase.
[1] 孔繁凱(2015)。天然絲光沸石膠囊之包覆技術開發及對Cs+離子的吸附特性
與改質高嶺土對Sr2+離子吸附之研究(未出版之 碩士論文)。國立成功大學,台南市。
[2] 潘瑋(2012)。銪離子於摻雜 (Mg、Ca、Sr)離子之鋁矽玻璃基質中的自發還原行為探討(未出版之 碩士論文)。國立成功大學,台南市。
[3] 廖秀曼(2014)。銪離子於(鈣、鍶)磷矽酸鹽玻璃中的螢光性質及其與基質結構特性之關連性研究(未出版之 碩士論文)。國立成功大學,台南市。
[4] Mimura, H., Yokota, K., Akiba, K., & Onodera, Y. (2001). Alkali hydrothermal synthesis of zeolites from coal fly ash and their uptake properties of cesium ion.Journal of nuclear Science and Technology, 38(9), 766-772.
[5] Zachariasen, W. H. (1932). The atomic arrangement in glass. Journal of the American Chemical Society, 54(10), 3841-3851.
[6] Brinker, C. J., & Scherer, G. W. (2013). Sol-gel science: the physics and chemistry of sol-gel processing. Academic press.
[7] Komarneni, S., Roy, R., Fyee, C. A., Kennedy, G. J., & Strobl, H. (1986). Solid‐State27Al and 29Si Magic‐Angle Spinning NMR of Aluminosilicate Gels. Journal of the American Ceramic Society, 69(3).
[8] Merceille, A., Weinzaepfel, E., Barré, Y., & Grandjean, A. (2012). The sorption behaviour of synthetic sodium nonatitanate and zeolite A for removing radioactive strontium from aqueous wastes. Separation and purification technology, 96, 81-88.
[9] Kesraoui‐Ouki, S., Cheeseman, C. R., & Perry, R. (1994). Natural zeolite utilisation in pollution control: A review of applications to metals' effluents.Journal of Chemical Technology and Biotechnology, 59(2), 121-126.
[10] Bermudez, V. M. (1971). Infrared study of boron trichloride chemisorbed on silica gel. The Journal of Physical Chemistry, 75(21), 3249-3257.
[11] Komarneni, S., Roy, R., Fyee, C. A., Kennedy, G. J., & Strobl, H. (1986). Solid‐State27Al and 29Si Magic‐Angle Spinning NMR of Aluminosilicate Gels. Journal of the American Ceramic Society, 69(3).
[12] Rao, K. J., Baskaran, N., Ramakrishnan, P. A., Ravi, B. G., & Karthikeyan, A. (1998). Structural and lithium ion transport studies in sol-gel-prepared lithium silicophosphate glasses. Chemistry of materials, 10(10), 3109-3123.
[13] Tilocca, A., & Cormack, A. N. (2007). Structural effects of phosphorus inclusion in bioactive silicate glasses. The Journal of Physical Chemistry B, 111(51), 14256-14264.
[14] Galliano, P. G., López, J. P., Varetti, E. L., Sobrados, I., & Sanz, J. (1994). Analysis by nuclear magnetic resonance and raman spectroscopies of the structure of bioactive alkaline-earth silicophosphate glasses. Materials research bulletin, 29(12), 1297-1306.
[15] Tilocca, A., & Cormack, A. N. (2007). Structural effects of phosphorus inclusion in bioactive silicate glasses. The Journal of Physical Chemistry B, 111(51), 14256-14264.
[16] Tilocca, A., Cormack, A. N., & de Leeuw, N. H. (2007). The structure of bioactive silicate glasses: new insight from molecular dynamics simulations.Chemistry of materials, 19(1), 95-103.
[17] Aguiar, H., Serra, J., González, P., & León, B. (2009). Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. Journal of Non-Crystalline Solids, 355(8), 475-480.
[18] Chaufer, B., & Deratani, A. (1988). Removal of metal ions by complexation-ultrafiltration using water-soluble macromolecules: perspective of application to wastewater treatment. Nuclear and chemical waste management, 8(3), 175-187.
[19] 顧翼東(1994)。化學辭典。臺北市:建宏出版社。
[20] Borai, E. H., Harjula, R., & Paajanen, A. (2009). Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. Journal of Hazardous Materials, 172(1), 416-422. [21] P. Rajec., et al (2008)., JRNC., 275, 503–508.
[22] Liang, T. J., & Tsai, J. Y. C. (1995). Sorption kinetics of cesium on natural mordenite. Applied Radiation and Isotopes, 46(1), 7-12.
[23] Ma, B., Oh, S., Shin, W. S., & Choi, S. J. (2011). Removal of Co 2+, Sr 2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM).Desalination, 276(1), 336-346.
[24] Ortiz, N., M. A. F. Pires, and J. C. Bressiani. "Use of steel converter slag as nickel adsorber to wastewater treatment." Waste Management 21.7 (2001): 631-635.
[25] FENG, B., & ZHANG, L. M. (2004). Current Situation and Trend of Treatment Technologies for Electroplating Heavy Metal Wastewater [J]. Jiang Su Environmental Science and Technology, 3, 015. [26] Irving Lanmuir (1918)., J. Am. Chem. Soc.
[27] Liu, X. D., Tokura, S., Haruki, M., Nishi, N., & Sakairi, N. (2002). Surface modification of nonporous glass beads with chitosan and their adsorption property for transition metal ions. Carbohydrate Polymers, 49(2), 103-108.
[28] Tsubokawa, N., Ichioka, H., Satoh, T., Hayashi, S., & Fujiki, K. (1998). Grafting of ‘dendrimer-like’highly branched polymer onto ultrafine silica surface. Reactive and functional polymers, 37(1), 75-82.
[29] M. W. Tamel(1950)., Discussions of the Faraday Society .
[30] Rudie, A. W., Ball, A., & Patel, N. (2006). Ion exchange of H+, Na+, Mg2+, Ca2+, Mn2+, and Ba2+ on wood pulp. Journal of wood chemistry and technology, 26(3), 259-272.
[31] 陳衡勳(2013)。鹼土離子對於銪在硼矽酸鹽基質中自發還原現象及螢光性質之研究 (未出版之 碩士論文)。國立成功大學,台南市。
[32] HAIR, M. L., & CHAPMAN, I. D. (1966). Surface composition of porous glass.Journal of the American Ceramic Society, 49(12), 651-654.
[33] Szumera, M., Wacławska, I., & Olejniczak, Z. (2010). Influence of B2O3 on the structure and crystallization of soil active glasses. Journal of thermal analysis and calorimetry, 99(3), 879-886.
[34] Diamond, S. (1983). On the glass present in low-calcium and in high-calcium flyashes. Cement and Concrete Research, 13(4), 459-464.
[35] Wang, J. A., Bokhimi, X., Morales, A., Novaro, O., Lopez, T., & Gomez, R. (1999). Aluminum local environment and defects in the crystalline structure of sol-gel alumina catalyst. The Journal of Physical Chemistry B, 103(2), 299-303.
[36] Komarneni, S., Roy, R., Fyee, C. A., Kennedy, G. J., & Strobl, H. (1986). Solid‐State27Al and 29Si Magic‐Angle Spinning NMR of Aluminosilicate Gels.Journal of the American Ceramic Society, 69(3).
[37] Komarneni, S., Roy, R., Fyee, C. A., Kennedy, G. J., & Strobl, H. (1986). Solid‐State27Al and 29Si Magic‐Angle Spinning NMR of Aluminosilicate Gels.Journal of the American Ceramic Society, 69(3).
[38] Macášek, F., Shaban, I. S., & Mátel, L. (1999). Cesium, strontium, europium (III) and plutonium (IV) complexes with humic acid in solution and on montmorillonite surface. Journal of radioanalytical and nuclear chemistry,241(3), 627-636.
[39] Omegna, A., van Bokhoven, J. A., & Prins, R. (2003). Flexible aluminum coordination in alumino-silicates. Structure of zeolite H-USY and amorphous silica-alumina. The Journal of Physical Chemistry B, 107(34), 8854-8860.
[40] Chapman, H. D. (1965). Cation-exchange capacity. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilanb), 891-901.
[41] Edmeades, D. C. (1982). Effects of lime on effective cation exchange capacity and exchangeable cations on a range of New Zealand soils. New Zealand journal of agricultural research, 25(1), 27-33.
[42] Trovarelli, A. (2002). Nonstoichiometric Behavior of Ceo.Catalysis by ceria and related materials, 2, 15.
[43] Shabana, E., & El-Dessouky, M. (2002). Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium. Journal of radioanalytical and nuclear chemistry, 253(2), 281-284.
[44] Venkatesan, K. A., Selvam, G. P., & Rao, P. V. (2000). Sorption of strontium on hydrous zirconium oxide. Separation Science and Technology, 35(14), 2343-2357.
[45] Qiu, Y., Yu, S., Song, Y., Wang, Q., Zhong, S., & Tian, W. (2013). Investigation of solution chemistry effects on sorption behavior of Sr (II) on sepiolite fibers.Journal of Molecular Liquids, 180, 244-251.
[46] Zhao, Y., Shao, Z., Chen, C., Hu, J., & Chen, H. (2014). Effect of environmental conditions on the adsorption behavior of Sr (II) by Na-rectorite.Applied Clay Science, 87, 1-6.
[47] Yu, S., Mei, H., Chen, X., Tan, X., Ahmad, B., Alsaedi, A., ... & Wang, X. (2015). Impact of environmental conditions on the sorption behavior of radionuclide 90 Sr (II) on Na-montmorillonite. Journal of Molecular Liquids, 203, 39-46. [48] Tiwari, Diwakar., et al (2015)., J environ Radioactiv., 147,76-84.
[49] Ma, B., Oh, S., Shin, W. S., & Choi, S. J. (2011). Removal of Co 2+, Sr 2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM).Desalination, 276(1), 336-346.
[50] El-Rahman, K. A., El-Kamash, A. M., El-Sourougy, M. R., & Abdel-Moniem, N. M. (2006). Thermodynamic modeling for the removal of Cs+, Sr2+, Ca2+ and Mg2+ ions from aqueous waste solutions using zeolite A. Journal of radioanalytical and nuclear chemistry, 268(2), 221-230.
[51] 周書葵 (2012)。射性廢水處理技術。中國:化學工業出版社。.
[52] 宋均軻(2011)。中低放射性廢水處利技術研究進展(未出版之 碩士論文)。中國礦業大學,江蘇。
[53] Sternat, M. R., Charlton, W. S., & Nichols, T. F. (2011, June). Monte-Carlo burnup calculation uncertainty quantification and propagation determination. InProc. Int. Conf. Math. Comp. Meth. Appl. Nucl. Sci. and Eng.(M&C 2011), on CD-ROM, American Nuclear Society (ANS). [54] B.L. Sawhney(1972)., Clays Clay Miner., 20, 93–100.
[55] Brouwer, E., Baeyens, B., Maes, A., & Cremers, A. (1983). Cesium and rubidium ion equilibriums in illite clay. The Journal of Physical Chemistry,87(7), 1213-1219.
[56] Ames, L. L. (1965). Self-diffusion of some cations in open zeolites. American Mineralogist, 50(3-4), 465.
[57] 劉正浩、劉伯里、張連水(1980)。從動力元件1AW中分離和回收銫-137,北京師範大學學報,北京。
[58] Liang, T. J., Hsu, C. N., & Liou, D. C. (1993). Modified Freundlich sorption of cesium and strontium on Wyoming bentonite. Applied radiation and isotopes,44(9), 1205-1208.
[59] lNo Ltrr, S. E. (1985). High-resolution 2esi NMR study of silicate and aluminosilicate glasses: the effect of network-modifying cations. American Mineralogist, 70, 332-343.
[60] Zirl, D. M., & Garofalini, S. H. (1990). Structure of sodium aluminosilicate glasses. Journal of the American Ceramic Society, 73(10), 2848-2856.
[61] Kohler Jr, A. E., & Garofalini, S. H. (1994). Effect of composition on the penetration of inert gases adsorbed onto silicate glass surfaces. Langmuir,10(12), 4664-4669.
[62] Davidovits, J(1998)., Geopolymer chemistry and properties., 25-48.
[63] 邱俊萍(2002)。利用高爐爐渣製成無機聚合材料之研究 (未出版之 碩士論文)。國立台北科技大學,台北市。
[64] Mimura, H., Saito, M., Akiba, K., & Onodera, Y. (2000). Selective uptake of cesium by ammonium tungstophosphate (AWP)-calcium alginate composites. Solvent Extraction and Ion Exchange, 18(5), 1015-1027.
[65] Houde-Walter, S. N., Inman, J. M., Dent, A. J., & Greaves, G. N. (1993). Sodium and silver environments and ion-exchange processes in silicate and aluminosilicate glasses. The Journal of Physical Chemistry, 97(37), 9330-9336.
[66] Park, Y., Lee, Y. C., Shin, W. S., & Choi, S. J. (2010). Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chemical Engineering Journal, 162(2), 685-695.
[67] Tiwari, D., & Lee, S. M. (2015). Physico-chemical studies in the removal of Sr (II) from aqueous solutions using activated sericite. Journal of environmental radioactivity, 147, 76-84.
[68] Smičiklas, I., Dimović, S., & Plećaš, I. (2007). Removal of Cs 1+, Sr 2+ and Co 2+ from aqueous solutions by adsorption on natural clinoptilolite. Applied Clay Science, 35(1), 139-144.
[69] Chegrouche, S., Mellah, A., & Barkat, M. (2009). Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination, 235(1), 306-318.
[70] Ararem, A., Bouras, O., & Bouzidi, A. (2013). Batch and continuous fixed-bed column adsorption of Cs+ and Sr2+ onto montmorillonite–iron oxide composite: Comparative and competitive study. Journal of Radioanalytical and Nuclear Chemistry, 298(1), 537-545.
[71] Shabana, E., & El-Dessouky, M. (2002). Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium. Journal of radioanalytical and nuclear chemistry, 253(2), 281-284.
[72] Langley, S., Gault, A. G., Ibrahim, A., Takahashi, Y., Renaud, R., Fortin, D., ... & Ferris, F. G. (2009). Sorption of strontium onto bacteriogenic iron oxides.Environmental science & technology, 43(4), 1008-1014.
[73] Wu, Y., Kim, S. Y., Tozawa, D., Ito, T., Tada, T., Hitomi, K., ... & Ishii, K. (2012). Equilibrium and kinetic studies of selective adsorption and separation for strontium using DtBuCH18C6 loaded resin. Journal of nuclear science and technology, 49(3), 320-327.
[74] Marinin, D. V., & Brown, G. N. (2000). Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Management, 20(7), 545-553.
[75]易發成,錢光人,李玉香(2004)。礦物材料對核素Sr、Cs的吸附性能研究。中國礦業大學,江蘇。
[76] Liang, T. J. (1999). The influence of cation concentration on the sorption of strontium on mordenite. Applied radiation and isotopes, 51(5), 527-532.
[77] Amphlett, C. B., McDonald, L. A., & Redman, M. J. (1958). Synthetic inorganic ion-exchange materials—I zirconium phosphate. Journal of Inorganic and Nuclear Chemistry, 6(3), 220-235.
[78] Adamczyk, Z. B. I. G. N. I. E. W. (2002). Irreversible adsorption of particles.Surfactant science series, 251-374.
[79] Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical society, 62(7), 1723-1732.
[80] Sarkar, M., Acharya, P. K., & Bhattacharya, B. (2003). Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters. Journal of colloid and interface science, 266(1), 28-32.
[81] Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31-60.
[82] Ball, W. P., & Roberts, P. V. (1991). Long-term sorption of halogenated organic chemicals by aquifer material. 2. Intraparticle diffusion. Environmental Science & Technology, 25(7), 1237-1249.
[83] Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34(5), 451-465.
[84] 陳弘梅(2010)。合成方沸石對鎳、錳、鉻、鍶離子吸附之研究(未出版之 碩士論文)。國立成功大學,台南市。
[85] Chu, K. H., & Hashim, M. A. (2000). Adsorption of copper (II) and EDTA‐chelated copper (II) onto granular activated carbons. Journal of Chemical Technology and Biotechnology, 75(11), 1054-1060.
[86] Ouki, S. K., & Kavannagh, M. (1997). Performance of natural zeolites for the treatment of mixed metal-contaminated effluents. Waste Management & Research, 15(4), 383-394. [87] IUPAC Manual of Symbols and Terminology(1982). Appendix 2, Part 1 Colloid and Surface Chemistry, Pure Appl. Chem, 52, 2201.
[88] Tansel, B. (2012). Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects. Separation and purification technology, 86, 119-126.
[89] Patnaik, P., & Dean, J. A. (2004). Dean's analytical chemistry handbook. McGraw-Hill.
[90] Manos, M. J., Ding, N., & Kanatzidis, M. G. (2008). Layered metal sulfides: exceptionally selective agents for radioactive strontium removal. Proceedings of the National Academy of Sciences, 105(10), 3696-3699.
[91] Mercier, L., & Pinnavaia, T. J. (1997). Access in mesoporous materials: advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation. Advanced Materials, 9(6), 500-503.
[92] J. Brown., et al.Chem. Commun., 1999, 69–70 RSC.
[93] Feng, X., Fryxell, G. E., Wang, L. Q., Kim, A. Y., Liu, J., & Kemner, K. M. (1997). Functionalized monolayers on ordered mesoporous supports. Science,276(5314), 923-926.
[94] Shin, Y., Fryxell, G. E., Um, W., Parker, K., Mattigod, S. V., & Skaggs, R. (2007). Sulfur‐Functionalized Mesoporous Carbon. Advanced Functional Materials, 17(15), 2897-2901.
[95] Manos, M. J., & Kanatzidis, M. G. (2009). Highly Efficient and Rapid Cs+ Uptake by the Layered Metal Sulfide K2 x Mn x Sn3− x S6 (KMS-1). Journal of the American Chemical Society, 131(18), 6599-6607.
[96] Xiao, Xiong, et al(2016)., J. Phys. Chem.
[97] Yang, D. J., Zheng, Z. F., Zhu, H. Y., Liu, H. W., & Gao, X. P. (2008). Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Advanced Materials, 20(14), 2777-2781.
[98] Rediske, J. H., & Selders, A. A. (1953). The absorption and translocation of strontium by plants. Plant physiology, 28(4), 594.
[99] Mimura, H., Wu, Y., Yufei, W., Niibori, Y., Yamagishi, I., Ozawa, M., ... & Koyama, S. (2011). Selective separation and recovery of cesium by ammonium tungstophosphate-alginate microcapsules. Nuclear Engineering and Design, 241(12), 4750-4757.
[100] Mena, O., Palomares-Ruiz, S., & Vincent, A. C. (2014). Flavor composition of the high-energy neutrino events in IceCube. Physical review letters, 113(9), 091103.
[101] Humphreys, E. R., & Howells, G. R. (1971). Degradation of sodium alginate by γ-irradiation and by oxidative-reductive depolymerization. Carbohydrate Research, 16(1), 65-69.
[102] Said, B., Grandjean, A., Barre, Y., Tancret, F., Fajula, F., & Galarneau, A. (2016). LTA zeolite monoliths with hierarchical trimodal porosity as highly efficient microreactors for strontium capture in continuous flow. Microporous and Mesoporous Materials..
[103] Sanchez, C., Lebeau, B., Ribot, F., & In, M. (2000). Molecular design of sol-gel derived hybrid organic-inorganic nanocomposites. Journal of Sol-Gel Science and Technology, 19(1-3), 31-38.
[104] Taira, M., & Yamaki, M. (1995). Preparation of SiO2-Al2O3 glass powders by the sol-gel process for dental applications. Journal of Materials Science: Materials in Medicine, 6(4), 197-200.
[105] Erdem, A., Shahwan, T., Çağır, A., & Eroğlu, A. E. (2011). Synthesis of aminopropyl triethoxysilane-functionalized silica and its application in speciation studies of vanadium (IV) and vanadium (V). Chemical engineering journal, 174(1), 76-85.
[106] Jokinen, M., Rahiala, H., Rosenholm, J. B., Peltola, T., & Kangasniemi, I. (1998). Relation between aggregation and heterogeneity of obtained structure in sol-gel derived CaO-P2O5-SiO2. Journal of sol-gel science and technology,12(3), 159-167.
[107] 何涌(2001)。高放廢液玻璃固化體和礦物固化體性質的比較。中國地質
大學,武漢。
[108] Patnaik, P., & Dean, J. A. (2004). Dean's analytical chemistry handbook. McGraw-Hill.
[109] Sarkar, M., Acharya, P. K., & Bhattacharya, B. (2003). Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters. Journal of colloid and interface science, 266(1), 28-32.
[110] Shpeizer, B. G., Bakhmutov, V. I., & Clearfield, A. (2006). Supermicroporous alumina–silica zinc oxides. Microporous and mesoporous materials, 90(1), 81-86.
[111] Shpeizer, B. G., Bakhmoutov, V. I., Zhang, P., Prosvirin, A. V., Dunbar, K. R., Thommes, M., & Clearfield, A. (2010). Transition metal–alumina/silica supermicroporous composites with tunable porosity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 357(1), 105-115.
[112] Lässig, D., Lincke, J., Moellmer, J., Reichenbach, C., Moeller, A., Gläser, R., ... & Krautscheid, H. (2011). A microporous copper metal–organic framework with high H2 and CO2 adsorption capacity at ambient pressure. Angewandte Chemie International Edition, 50(44), 10344-10348.
[113] Majlesi, K., Gholamhosseinzadeh, M., & Rezaienejad, S. (2010). Interaction of molybdenum (VI) with methyliminodiacetic acid at different ionic strengths by using parabolic, extended Debye-Hückel and specific ion interaction models.Journal of Solution Chemistry, 39(5), 665-679.
[114] Sun, Y., Wang, Q., Chen, C., Tan, X., & Wang, X. (2012). Interaction between Eu (III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques.Environmental science & technology, 46(11), 6020-6027.
[115] Ho, Y. S. (2006). Review of second-order models for adsorption systems.Journal of hazardous materials, 136(3), 681-689.
[116] Tan, I. A. W., Ahmad, A. L., & Hameed, B. H. (2009). Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials, 164(2), 473-482.
[117] Du, Z., Jia, M., & Wang, X. (2013). Cesium removal from solution using PAN-based potassium nickel hexacyanoferrate (II) composite spheres. Journal of Radioanalytical and Nuclear Chemistry, 298(1), 167-177.
[118] Smith, I. W., & Ravishankara, A. R. (2002). Role of hydrogen-bonded intermediates in the bimolecular reactions of the hydroxyl radical. The Journal of Physical Chemistry A, 106(19), 4798-4807.
[119] Wei, J. (1996). Adsorption and cracking of n-alkanes over ZSM-5: negative activation energy of reaction. Chemical engineering science, 51(11), 2995-2999.
[120] Bascetin, E., Haznedaroglu, H., & Erkol, A. Y. (2003). The adsorption behavior of cesium on silica gel. Applied radiation and isotopes, 59(1), 5-9.
[121] Nibou, D., Mekatel, H., Amokrane, S., Barkat, M., & Trari, M. (2010). Adsorption of Zn 2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies. Journal of Hazardous Materials, 173(1), 637-646.
[122] Reeve, K. D., Levins, D. M., Ramm, E. J., & Woolfrey, J. L. (1983). The development and evaluation of SYNROC for high-level radioactive waste immobilization. Conditioning of Radioactive Wastes for Storage and Disposal, 375.
[123] 楊金燕(2005)。土壤中鉛的吸附-解吸行為研究進展。浙江大學生態環境學報。
[124] Dimitrijevic, R., Kremenovic, A., Dondur, V., Tomaševic-Canovic, M., & Mitrovic, M. (1997). Thermally Induced Conversion of Sr-Exchanged LTA-and FAU-Framework Zeolites. Syntheses, Characterization, and Polymorphism of Ordered and Disordered Sr1-x Al2-2 x Si2+ 2 x O8 (x= 0; 0.15), Diphyllosilicate, and Feldspar Phases. The Journal of Physical Chemistry B,101(20), 3931-3936.
校內:2022-08-20公開