簡易檢索 / 詳目顯示

研究生: 鄺子薇
Kuang, Zei-Wei
論文名稱: 礦物膠囊製程開發及其對Sr、Cs離子吸附性質之研究
Fabrication of sodium aluminosilicate encapsulation of mordenite for the decontamination of strontium and Cesium ions.
指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 117
中文關鍵詞: 鋁矽膠囊溶膠-凝膠法吸附反應鍶離子銫離子離子競爭離子封存
外文關鍵詞: capsules, adsorption, mordenite, ion competition, Cs+ ion, Sr2+ ion
相關次數: 點閱:124下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以溶膠-凝膠法成功製成鋁矽基質膠囊,將其應用於吸附核廠冷卻水中核種元素—Sr離子。本研究探討鋁矽系統中Al離子配位數、Na離子摻雜量及比表面積變化,對Sr離子吸附效率的影響。由NMR、EDXS、BET及批次吸附試驗結果得知,當結構中Al離子產生六配位數、陽離子摻雜量高皆有助於核種離子與膠囊材料進行離子交換,進而提高陽離子交換效率。
    本研究第二部份則是將對Cs離子具有高吸附特性的天然絲光沸石,以吸附效率最高的膠囊(N1A1S1)包覆製成礦物膠囊。經吸附試驗結果與性質分析後,Sr離子吸附效率隨著礦物包覆量增加而降低,而Cs離子吸附效果則不受膠囊包覆影響。並將樣品進行Sr、Cs離子的離子競爭吸附試驗,在離子競爭下,N1A1S1膠囊對Sr離子的吸附效果可達95.8 mg/g,而若以同時去除Cs與Sr離子為目標,礦物膠囊N1A1S1_50樣品可作為雙離子吸附劑,其對Sr與Cs之吸附量分別可達68.9 mg/g與150.1 mg/g。吸附完成的礦物膠囊廢料,經高溫處理,得一無孔隙且具鍶鈉長石晶相結構之產物,有效達到離子封存之效果。

    This study is devoted to developing a new type of encapsulating material applied for the decontamination of Sr2+ and Cs+ ions. Sodium aluminosilicate (NAS) xerogel was prepared via sol–gel process and will serve as encapsulating material to enclose natural mordenite powders. The as-obtained NAS xerogel exhibits slit-like shaped pores and a specific surface area of 46.3 m2/g. The batch experimental results show that NAS xerogel having adsorption effect for both Sr2+ and Cs+ ions and the uptake efficiency reached 72.7 mg/g and 117.4 mg/g, respectively. In the binary ionic environment, the uptake efficiency further increases to 95.8 mg/g and 126.3 mg/g for Sr2+ and Cs+ ions respectively.
    In the second part of this study, NAS xerogel was used to enclose 50 wt.% of natural mordenite powders (NAS_50). Batch experimental results show that the overall specific surface area increased from 46.3 m2/g to 103.0 m2/g due to the highly porous feature of mordenite. The mordenite capsule showed that the overall uptake efficiency for Sr2+ ions slightly decreased from 72.7 mg/g down to 47.2 mg/g because of the low selective adsorption capability to Sr2+ of mordenite. Nevertheless, the coexistence of Sr2+ and Cs+ in solution still allows increasing the adsorption capacity up to 68.9 mg/g and 150.1mg/g for Sr2+ and Cs+, respectively.
    Finally, NAS xerogel was again heat-treated up to 1300°С for 2 hours to carry out the ionic immobilization. The adsorbed Sr2+ ion was immobilized in NAS structure by forming Sr-feldspar phase.

    目錄 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.2.1 膠囊封裝技術 3 1.2.2 無機聚合物成分之吸附劑 4 第二章 理論基礎與相關文獻 6 2.1 90Sr與137Cs離子特性概述 6 2.2 放射性核廢水處理方式 7 2.2.1 化學沉澱法 8 2.2.2 離子交換法 9 2.2.3 其他處理方法 12 2.3 膠囊包覆技術 13 2.4 溶膠-凝膠法製備膠囊 14 2.4.1 二氧化矽單元網絡系統 17 2.4.2 二氧化矽摻雜陽離子之二元網絡系統 17 2.5 吸附理論 21 2.5.1 特定吸附與非特定吸附 21 2.5.2 等溫吸附模式 22 2.5.3 吸附熱力學 25 2.5.4 吸附動力學 26 2.5.5 影響吸附因素 28 第三章 實驗方法及步驟 32 3.1 實驗藥品 32 3.2 實驗流程 34 3.2.1 磷矽基質膠囊系統 34 3.2.2 硼矽基質膠囊系統 35 3.2.3 鋁矽基質膠囊系統 36 3.2.4 絲光沸石礦物膠囊製備 37 3.3 膠囊材料之性質分析 38 3.3.1 X光繞射分析(XRD) 38 3.3.2 比表面積分析儀 39 3.3.3 能量散佈分析儀 (EDXS) 40 3.3.4 固態核磁共振光譜儀(NMR) 40 3.3.5 火焰式原子吸收光譜儀(AAS) 41 3.4 離子批次吸附實驗 42 3.4.1 恆溫單次吸附實驗 42 3.4.2 恆溫吸附平衡實驗 43 3.4.3 變溫吸附平衡實驗 43 3.4.4 恆溫吸附動力實驗 44 3.4.5 Sr、Cs離子競爭吸附實驗 45 3.4.6 膠囊高溫封存處理 46 第四章 結果與討論 47 4.1 膠囊材料成分系統初步探討 47 4.1.1 磷矽(PS)系統 48 4.1.2 硼矽(BS)系統 51 4.1.3 鋁矽(AS)系統 54 4.2 鋁矽系統(AS)對Sr離子之吸附效果 57 4.2.1 CAS及NAS乾膠成分分析 57 4.2.2 NAS系統對Sr離子之初步吸附測試 59 4.2.3 NAS乾膠改變Na離子含量對吸附Sr離子之影響 60 4.2.4 改變Al含量對吸附Sr離子之影響及陽離子交換效率 61 4.2.5 NAS膠囊中Al離子配位數對吸附Sr離子的影響 62 4.2.6 NAS乾膠對Sr離子之吸附機制 65 4.3 NAS膠囊包覆礦物性質分析 67 4.3.1 NAS膠囊包覆礦物後比表面積及孔隙率變化 67 4.3.2 NAS膠囊包覆礦物後對Sr離子的吸附效果 71 4.3.3 NAS膠囊包覆礦物後對Cs離子的吸附效果 73 4.3.4 礦物膠囊在雙離子共存下之離子吸附效率探討 75 4.3.5 礦物膠囊對Sr離子的吸附模式 77 4.3.6 礦物膠囊對Sr、Cs離子之熱力學吸附行為探討 80 4.3.7 礦物膠囊的吸附動力學 85 4.4 NAS膠囊材料之封存 97 第五章 結論 101 參考文獻 103

    [1] 孔繁凱(2015)。天然絲光沸石膠囊之包覆技術開發及對Cs+離子的吸附特性
    與改質高嶺土對Sr2+離子吸附之研究(未出版之 碩士論文)。國立成功大學,台南市。
    [2] 潘瑋(2012)。銪離子於摻雜 (Mg、Ca、Sr)離子之鋁矽玻璃基質中的自發還原行為探討(未出版之 碩士論文)。國立成功大學,台南市。
    [3] 廖秀曼(2014)。銪離子於(鈣、鍶)磷矽酸鹽玻璃中的螢光性質及其與基質結構特性之關連性研究(未出版之 碩士論文)。國立成功大學,台南市。
    [4] Mimura, H., Yokota, K., Akiba, K., & Onodera, Y. (2001). Alkali hydrothermal synthesis of zeolites from coal fly ash and their uptake properties of cesium ion.Journal of nuclear Science and Technology, 38(9), 766-772.
    [5] Zachariasen, W. H. (1932). The atomic arrangement in glass. Journal of the American Chemical Society, 54(10), 3841-3851.
    [6] Brinker, C. J., & Scherer, G. W. (2013). Sol-gel science: the physics and chemistry of sol-gel processing. Academic press.
    [7] Komarneni, S., Roy, R., Fyee, C. A., Kennedy, G. J., & Strobl, H. (1986). Solid‐State27Al and 29Si Magic‐Angle Spinning NMR of Aluminosilicate Gels. Journal of the American Ceramic Society, 69(3).
    [8] Merceille, A., Weinzaepfel, E., Barré, Y., & Grandjean, A. (2012). The sorption behaviour of synthetic sodium nonatitanate and zeolite A for removing radioactive strontium from aqueous wastes. Separation and purification technology, 96, 81-88.
    [9] Kesraoui‐Ouki, S., Cheeseman, C. R., & Perry, R. (1994). Natural zeolite utilisation in pollution control: A review of applications to metals' effluents.Journal of Chemical Technology and Biotechnology, 59(2), 121-126.
    [10] Bermudez, V. M. (1971). Infrared study of boron trichloride chemisorbed on silica gel. The Journal of Physical Chemistry, 75(21), 3249-3257.
    [11] Komarneni, S., Roy, R., Fyee, C. A., Kennedy, G. J., & Strobl, H. (1986). Solid‐State27Al and 29Si Magic‐Angle Spinning NMR of Aluminosilicate Gels. Journal of the American Ceramic Society, 69(3).
    [12] Rao, K. J., Baskaran, N., Ramakrishnan, P. A., Ravi, B. G., & Karthikeyan, A. (1998). Structural and lithium ion transport studies in sol-gel-prepared lithium silicophosphate glasses. Chemistry of materials, 10(10), 3109-3123.
    [13] Tilocca, A., & Cormack, A. N. (2007). Structural effects of phosphorus inclusion in bioactive silicate glasses. The Journal of Physical Chemistry B, 111(51), 14256-14264.
    [14] Galliano, P. G., López, J. P., Varetti, E. L., Sobrados, I., & Sanz, J. (1994). Analysis by nuclear magnetic resonance and raman spectroscopies of the structure of bioactive alkaline-earth silicophosphate glasses. Materials research bulletin, 29(12), 1297-1306.
    [15] Tilocca, A., & Cormack, A. N. (2007). Structural effects of phosphorus inclusion in bioactive silicate glasses. The Journal of Physical Chemistry B, 111(51), 14256-14264.
    [16] Tilocca, A., Cormack, A. N., & de Leeuw, N. H. (2007). The structure of bioactive silicate glasses: new insight from molecular dynamics simulations.Chemistry of materials, 19(1), 95-103.
    [17] Aguiar, H., Serra, J., González, P., & León, B. (2009). Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. Journal of Non-Crystalline Solids, 355(8), 475-480.
    [18] Chaufer, B., & Deratani, A. (1988). Removal of metal ions by complexation-ultrafiltration using water-soluble macromolecules: perspective of application to wastewater treatment. Nuclear and chemical waste management, 8(3), 175-187.
    [19] 顧翼東(1994)。化學辭典。臺北市:建宏出版社。
    [20] Borai, E. H., Harjula, R., & Paajanen, A. (2009). Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. Journal of Hazardous Materials, 172(1), 416-422. [21] P. Rajec., et al (2008)., JRNC., 275, 503–508.
    [22] Liang, T. J., & Tsai, J. Y. C. (1995). Sorption kinetics of cesium on natural mordenite. Applied Radiation and Isotopes, 46(1), 7-12.
    [23] Ma, B., Oh, S., Shin, W. S., & Choi, S. J. (2011). Removal of Co 2+, Sr 2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM).Desalination, 276(1), 336-346.
    [24] Ortiz, N., M. A. F. Pires, and J. C. Bressiani. "Use of steel converter slag as nickel adsorber to wastewater treatment." Waste Management 21.7 (2001): 631-635.
    [25] FENG, B., & ZHANG, L. M. (2004). Current Situation and Trend of Treatment Technologies for Electroplating Heavy Metal Wastewater [J]. Jiang Su Environmental Science and Technology, 3, 015. [26] Irving Lanmuir (1918)., J. Am. Chem. Soc.
    [27] Liu, X. D., Tokura, S., Haruki, M., Nishi, N., & Sakairi, N. (2002). Surface modification of nonporous glass beads with chitosan and their adsorption property for transition metal ions. Carbohydrate Polymers, 49(2), 103-108.
    [28] Tsubokawa, N., Ichioka, H., Satoh, T., Hayashi, S., & Fujiki, K. (1998). Grafting of ‘dendrimer-like’highly branched polymer onto ultrafine silica surface. Reactive and functional polymers, 37(1), 75-82.
    [29] M. W. Tamel(1950)., Discussions of the Faraday Society .
    [30] Rudie, A. W., Ball, A., & Patel, N. (2006). Ion exchange of H+, Na+, Mg2+, Ca2+, Mn2+, and Ba2+ on wood pulp. Journal of wood chemistry and technology, 26(3), 259-272.
    [31] 陳衡勳(2013)。鹼土離子對於銪在硼矽酸鹽基質中自發還原現象及螢光性質之研究 (未出版之 碩士論文)。國立成功大學,台南市。
    [32] HAIR, M. L., & CHAPMAN, I. D. (1966). Surface composition of porous glass.Journal of the American Ceramic Society, 49(12), 651-654.
    [33] Szumera, M., Wacławska, I., & Olejniczak, Z. (2010). Influence of B2O3 on the structure and crystallization of soil active glasses. Journal of thermal analysis and calorimetry, 99(3), 879-886.
    [34] Diamond, S. (1983). On the glass present in low-calcium and in high-calcium flyashes. Cement and Concrete Research, 13(4), 459-464.
    [35] Wang, J. A., Bokhimi, X., Morales, A., Novaro, O., Lopez, T., & Gomez, R. (1999). Aluminum local environment and defects in the crystalline structure of sol-gel alumina catalyst. The Journal of Physical Chemistry B, 103(2), 299-303.
    [36] Komarneni, S., Roy, R., Fyee, C. A., Kennedy, G. J., & Strobl, H. (1986). Solid‐State27Al and 29Si Magic‐Angle Spinning NMR of Aluminosilicate Gels.Journal of the American Ceramic Society, 69(3).
    [37] Komarneni, S., Roy, R., Fyee, C. A., Kennedy, G. J., & Strobl, H. (1986). Solid‐State27Al and 29Si Magic‐Angle Spinning NMR of Aluminosilicate Gels.Journal of the American Ceramic Society, 69(3).
    [38] Macášek, F., Shaban, I. S., & Mátel, L. (1999). Cesium, strontium, europium (III) and plutonium (IV) complexes with humic acid in solution and on montmorillonite surface. Journal of radioanalytical and nuclear chemistry,241(3), 627-636.
    [39] Omegna, A., van Bokhoven, J. A., & Prins, R. (2003). Flexible aluminum coordination in alumino-silicates. Structure of zeolite H-USY and amorphous silica-alumina. The Journal of Physical Chemistry B, 107(34), 8854-8860.
    [40] Chapman, H. D. (1965). Cation-exchange capacity. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilanb), 891-901.
    [41] Edmeades, D. C. (1982). Effects of lime on effective cation exchange capacity and exchangeable cations on a range of New Zealand soils. New Zealand journal of agricultural research, 25(1), 27-33.
    [42] Trovarelli, A. (2002). Nonstoichiometric Behavior of Ceo.Catalysis by ceria and related materials, 2, 15.
    [43] Shabana, E., & El-Dessouky, M. (2002). Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium. Journal of radioanalytical and nuclear chemistry, 253(2), 281-284.
    [44] Venkatesan, K. A., Selvam, G. P., & Rao, P. V. (2000). Sorption of strontium on hydrous zirconium oxide. Separation Science and Technology, 35(14), 2343-2357.
    [45] Qiu, Y., Yu, S., Song, Y., Wang, Q., Zhong, S., & Tian, W. (2013). Investigation of solution chemistry effects on sorption behavior of Sr (II) on sepiolite fibers.Journal of Molecular Liquids, 180, 244-251.
    [46] Zhao, Y., Shao, Z., Chen, C., Hu, J., & Chen, H. (2014). Effect of environmental conditions on the adsorption behavior of Sr (II) by Na-rectorite.Applied Clay Science, 87, 1-6.
    [47] Yu, S., Mei, H., Chen, X., Tan, X., Ahmad, B., Alsaedi, A., ... & Wang, X. (2015). Impact of environmental conditions on the sorption behavior of radionuclide 90 Sr (II) on Na-montmorillonite. Journal of Molecular Liquids, 203, 39-46. [48] Tiwari, Diwakar., et al (2015)., J environ Radioactiv., 147,76-84.
    [49] Ma, B., Oh, S., Shin, W. S., & Choi, S. J. (2011). Removal of Co 2+, Sr 2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM).Desalination, 276(1), 336-346.
    [50] El-Rahman, K. A., El-Kamash, A. M., El-Sourougy, M. R., & Abdel-Moniem, N. M. (2006). Thermodynamic modeling for the removal of Cs+, Sr2+, Ca2+ and Mg2+ ions from aqueous waste solutions using zeolite A. Journal of radioanalytical and nuclear chemistry, 268(2), 221-230.
    [51] 周書葵 (2012)。射性廢水處理技術。中國:化學工業出版社。.
    [52] 宋均軻(2011)。中低放射性廢水處利技術研究進展(未出版之 碩士論文)。中國礦業大學,江蘇。
    [53] Sternat, M. R., Charlton, W. S., & Nichols, T. F. (2011, June). Monte-Carlo burnup calculation uncertainty quantification and propagation determination. InProc. Int. Conf. Math. Comp. Meth. Appl. Nucl. Sci. and Eng.(M&C 2011), on CD-ROM, American Nuclear Society (ANS). [54] B.L. Sawhney(1972)., Clays Clay Miner., 20, 93–100.
    [55] Brouwer, E., Baeyens, B., Maes, A., & Cremers, A. (1983). Cesium and rubidium ion equilibriums in illite clay. The Journal of Physical Chemistry,87(7), 1213-1219.
    [56] Ames, L. L. (1965). Self-diffusion of some cations in open zeolites. American Mineralogist, 50(3-4), 465.
    [57] 劉正浩、劉伯里、張連水(1980)。從動力元件1AW中分離和回收銫-137,北京師範大學學報,北京。
    [58] Liang, T. J., Hsu, C. N., & Liou, D. C. (1993). Modified Freundlich sorption of cesium and strontium on Wyoming bentonite. Applied radiation and isotopes,44(9), 1205-1208.
    [59] lNo Ltrr, S. E. (1985). High-resolution 2esi NMR study of silicate and aluminosilicate glasses: the effect of network-modifying cations. American Mineralogist, 70, 332-343.
    [60] Zirl, D. M., & Garofalini, S. H. (1990). Structure of sodium aluminosilicate glasses. Journal of the American Ceramic Society, 73(10), 2848-2856.
    [61] Kohler Jr, A. E., & Garofalini, S. H. (1994). Effect of composition on the penetration of inert gases adsorbed onto silicate glass surfaces. Langmuir,10(12), 4664-4669.
    [62] Davidovits, J(1998)., Geopolymer chemistry and properties., 25-48.
    [63] 邱俊萍(2002)。利用高爐爐渣製成無機聚合材料之研究 (未出版之 碩士論文)。國立台北科技大學,台北市。
    [64] Mimura, H., Saito, M., Akiba, K., & Onodera, Y. (2000). Selective uptake of cesium by ammonium tungstophosphate (AWP)-calcium alginate composites. Solvent Extraction and Ion Exchange, 18(5), 1015-1027.
    [65] Houde-Walter, S. N., Inman, J. M., Dent, A. J., & Greaves, G. N. (1993). Sodium and silver environments and ion-exchange processes in silicate and aluminosilicate glasses. The Journal of Physical Chemistry, 97(37), 9330-9336.
    [66] Park, Y., Lee, Y. C., Shin, W. S., & Choi, S. J. (2010). Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chemical Engineering Journal, 162(2), 685-695.
    [67] Tiwari, D., & Lee, S. M. (2015). Physico-chemical studies in the removal of Sr (II) from aqueous solutions using activated sericite. Journal of environmental radioactivity, 147, 76-84.
    [68] Smičiklas, I., Dimović, S., & Plećaš, I. (2007). Removal of Cs 1+, Sr 2+ and Co 2+ from aqueous solutions by adsorption on natural clinoptilolite. Applied Clay Science, 35(1), 139-144.
    [69] Chegrouche, S., Mellah, A., & Barkat, M. (2009). Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination, 235(1), 306-318.
    [70] Ararem, A., Bouras, O., & Bouzidi, A. (2013). Batch and continuous fixed-bed column adsorption of Cs+ and Sr2+ onto montmorillonite–iron oxide composite: Comparative and competitive study. Journal of Radioanalytical and Nuclear Chemistry, 298(1), 537-545.
    [71] Shabana, E., & El-Dessouky, M. (2002). Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium. Journal of radioanalytical and nuclear chemistry, 253(2), 281-284.
    [72] Langley, S., Gault, A. G., Ibrahim, A., Takahashi, Y., Renaud, R., Fortin, D., ... & Ferris, F. G. (2009). Sorption of strontium onto bacteriogenic iron oxides.Environmental science & technology, 43(4), 1008-1014.
    [73] Wu, Y., Kim, S. Y., Tozawa, D., Ito, T., Tada, T., Hitomi, K., ... & Ishii, K. (2012). Equilibrium and kinetic studies of selective adsorption and separation for strontium using DtBuCH18C6 loaded resin. Journal of nuclear science and technology, 49(3), 320-327.
    [74] Marinin, D. V., & Brown, G. N. (2000). Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Management, 20(7), 545-553.
    [75]易發成,錢光人,李玉香(2004)。礦物材料對核素Sr、Cs的吸附性能研究。中國礦業大學,江蘇。
    [76] Liang, T. J. (1999). The influence of cation concentration on the sorption of strontium on mordenite. Applied radiation and isotopes, 51(5), 527-532.
    [77] Amphlett, C. B., McDonald, L. A., & Redman, M. J. (1958). Synthetic inorganic ion-exchange materials—I zirconium phosphate. Journal of Inorganic and Nuclear Chemistry, 6(3), 220-235.
    [78] Adamczyk, Z. B. I. G. N. I. E. W. (2002). Irreversible adsorption of particles.Surfactant science series, 251-374.
    [79] Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical society, 62(7), 1723-1732.
    [80] Sarkar, M., Acharya, P. K., & Bhattacharya, B. (2003). Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters. Journal of colloid and interface science, 266(1), 28-32.
    [81] Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31-60.
    [82] Ball, W. P., & Roberts, P. V. (1991). Long-term sorption of halogenated organic chemicals by aquifer material. 2. Intraparticle diffusion. Environmental Science & Technology, 25(7), 1237-1249.
    [83] Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34(5), 451-465.
    [84] 陳弘梅(2010)。合成方沸石對鎳、錳、鉻、鍶離子吸附之研究(未出版之 碩士論文)。國立成功大學,台南市。
    [85] Chu, K. H., & Hashim, M. A. (2000). Adsorption of copper (II) and EDTA‐chelated copper (II) onto granular activated carbons. Journal of Chemical Technology and Biotechnology, 75(11), 1054-1060.
    [86] Ouki, S. K., & Kavannagh, M. (1997). Performance of natural zeolites for the treatment of mixed metal-contaminated effluents. Waste Management & Research, 15(4), 383-394. [87] IUPAC Manual of Symbols and Terminology(1982). Appendix 2, Part 1 Colloid and Surface Chemistry, Pure Appl. Chem, 52, 2201.
    [88] Tansel, B. (2012). Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects. Separation and purification technology, 86, 119-126.
    [89] Patnaik, P., & Dean, J. A. (2004). Dean's analytical chemistry handbook. McGraw-Hill.
    [90] Manos, M. J., Ding, N., & Kanatzidis, M. G. (2008). Layered metal sulfides: exceptionally selective agents for radioactive strontium removal. Proceedings of the National Academy of Sciences, 105(10), 3696-3699.
    [91] Mercier, L., & Pinnavaia, T. J. (1997). Access in mesoporous materials: advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation. Advanced Materials, 9(6), 500-503.
    [92] J. Brown., et al.Chem. Commun., 1999, 69–70 RSC.
    [93] Feng, X., Fryxell, G. E., Wang, L. Q., Kim, A. Y., Liu, J., & Kemner, K. M. (1997). Functionalized monolayers on ordered mesoporous supports. Science,276(5314), 923-926.
    [94] Shin, Y., Fryxell, G. E., Um, W., Parker, K., Mattigod, S. V., & Skaggs, R. (2007). Sulfur‐Functionalized Mesoporous Carbon. Advanced Functional Materials, 17(15), 2897-2901.
    [95] Manos, M. J., & Kanatzidis, M. G. (2009). Highly Efficient and Rapid Cs+ Uptake by the Layered Metal Sulfide K2 x Mn x Sn3− x S6 (KMS-1). Journal of the American Chemical Society, 131(18), 6599-6607.
    [96] Xiao, Xiong, et al(2016)., J. Phys. Chem.
    [97] Yang, D. J., Zheng, Z. F., Zhu, H. Y., Liu, H. W., & Gao, X. P. (2008). Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Advanced Materials, 20(14), 2777-2781.
    [98] Rediske, J. H., & Selders, A. A. (1953). The absorption and translocation of strontium by plants. Plant physiology, 28(4), 594.
    [99] Mimura, H., Wu, Y., Yufei, W., Niibori, Y., Yamagishi, I., Ozawa, M., ... & Koyama, S. (2011). Selective separation and recovery of cesium by ammonium tungstophosphate-alginate microcapsules. Nuclear Engineering and Design, 241(12), 4750-4757.
    [100] Mena, O., Palomares-Ruiz, S., & Vincent, A. C. (2014). Flavor composition of the high-energy neutrino events in IceCube. Physical review letters, 113(9), 091103.
    [101] Humphreys, E. R., & Howells, G. R. (1971). Degradation of sodium alginate by γ-irradiation and by oxidative-reductive depolymerization. Carbohydrate Research, 16(1), 65-69.
    [102] Said, B., Grandjean, A., Barre, Y., Tancret, F., Fajula, F., & Galarneau, A. (2016). LTA zeolite monoliths with hierarchical trimodal porosity as highly efficient microreactors for strontium capture in continuous flow. Microporous and Mesoporous Materials..
    [103] Sanchez, C., Lebeau, B., Ribot, F., & In, M. (2000). Molecular design of sol-gel derived hybrid organic-inorganic nanocomposites. Journal of Sol-Gel Science and Technology, 19(1-3), 31-38.
    [104] Taira, M., & Yamaki, M. (1995). Preparation of SiO2-Al2O3 glass powders by the sol-gel process for dental applications. Journal of Materials Science: Materials in Medicine, 6(4), 197-200.
    [105] Erdem, A., Shahwan, T., Çağır, A., & Eroğlu, A. E. (2011). Synthesis of aminopropyl triethoxysilane-functionalized silica and its application in speciation studies of vanadium (IV) and vanadium (V). Chemical engineering journal, 174(1), 76-85.
    [106] Jokinen, M., Rahiala, H., Rosenholm, J. B., Peltola, T., & Kangasniemi, I. (1998). Relation between aggregation and heterogeneity of obtained structure in sol-gel derived CaO-P2O5-SiO2. Journal of sol-gel science and technology,12(3), 159-167.
    [107] 何涌(2001)。高放廢液玻璃固化體和礦物固化體性質的比較。中國地質
    大學,武漢。
    [108] Patnaik, P., & Dean, J. A. (2004). Dean's analytical chemistry handbook. McGraw-Hill.
    [109] Sarkar, M., Acharya, P. K., & Bhattacharya, B. (2003). Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters. Journal of colloid and interface science, 266(1), 28-32.
    [110] Shpeizer, B. G., Bakhmutov, V. I., & Clearfield, A. (2006). Supermicroporous alumina–silica zinc oxides. Microporous and mesoporous materials, 90(1), 81-86.
    [111] Shpeizer, B. G., Bakhmoutov, V. I., Zhang, P., Prosvirin, A. V., Dunbar, K. R., Thommes, M., & Clearfield, A. (2010). Transition metal–alumina/silica supermicroporous composites with tunable porosity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 357(1), 105-115.
    [112] Lässig, D., Lincke, J., Moellmer, J., Reichenbach, C., Moeller, A., Gläser, R., ... & Krautscheid, H. (2011). A microporous copper metal–organic framework with high H2 and CO2 adsorption capacity at ambient pressure. Angewandte Chemie International Edition, 50(44), 10344-10348.
    [113] Majlesi, K., Gholamhosseinzadeh, M., & Rezaienejad, S. (2010). Interaction of molybdenum (VI) with methyliminodiacetic acid at different ionic strengths by using parabolic, extended Debye-Hückel and specific ion interaction models.Journal of Solution Chemistry, 39(5), 665-679.
    [114] Sun, Y., Wang, Q., Chen, C., Tan, X., & Wang, X. (2012). Interaction between Eu (III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques.Environmental science & technology, 46(11), 6020-6027.
    [115] Ho, Y. S. (2006). Review of second-order models for adsorption systems.Journal of hazardous materials, 136(3), 681-689.
    [116] Tan, I. A. W., Ahmad, A. L., & Hameed, B. H. (2009). Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials, 164(2), 473-482.
    [117] Du, Z., Jia, M., & Wang, X. (2013). Cesium removal from solution using PAN-based potassium nickel hexacyanoferrate (II) composite spheres. Journal of Radioanalytical and Nuclear Chemistry, 298(1), 167-177.
    [118] Smith, I. W., & Ravishankara, A. R. (2002). Role of hydrogen-bonded intermediates in the bimolecular reactions of the hydroxyl radical. The Journal of Physical Chemistry A, 106(19), 4798-4807.
    [119] Wei, J. (1996). Adsorption and cracking of n-alkanes over ZSM-5: negative activation energy of reaction. Chemical engineering science, 51(11), 2995-2999.
    [120] Bascetin, E., Haznedaroglu, H., & Erkol, A. Y. (2003). The adsorption behavior of cesium on silica gel. Applied radiation and isotopes, 59(1), 5-9.
    [121] Nibou, D., Mekatel, H., Amokrane, S., Barkat, M., & Trari, M. (2010). Adsorption of Zn 2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies. Journal of Hazardous Materials, 173(1), 637-646.
    [122] Reeve, K. D., Levins, D. M., Ramm, E. J., & Woolfrey, J. L. (1983). The development and evaluation of SYNROC for high-level radioactive waste immobilization. Conditioning of Radioactive Wastes for Storage and Disposal, 375.
    [123] 楊金燕(2005)。土壤中鉛的吸附-解吸行為研究進展。浙江大學生態環境學報。
    [124] Dimitrijevic, R., Kremenovic, A., Dondur, V., Tomaševic-Canovic, M., & Mitrovic, M. (1997). Thermally Induced Conversion of Sr-Exchanged LTA-and FAU-Framework Zeolites. Syntheses, Characterization, and Polymorphism of Ordered and Disordered Sr1-x Al2-2 x Si2+ 2 x O8 (x= 0; 0.15), Diphyllosilicate, and Feldspar Phases. The Journal of Physical Chemistry B,101(20), 3931-3936.

    無法下載圖示 校內:2022-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE