簡易檢索 / 詳目顯示

研究生: 林奐佑
Lin, Huan-You
論文名稱: Au-TiO2複合之非對稱U型超穎表面製作與特性研究應用於手性分子之手性檢測
Fabrication and Optical Characteristics of Asymmetric U-shaped Metasurface Composed of Gold and Titania, Applying to Chirality Detection of Chiral Molecules
指導教授: 林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 181
中文關鍵詞: 各向異性手性超穎表面圓雙折射性圓二色性色胺酸手性檢測
外文關鍵詞: anisotropic chiral metasurface, circular birefringence, circular dichroism, Tryptophan, chirality detection
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究論文中,我們以奈米壓印、反應離子蝕刻(RIE)、感應耦合電漿離子蝕刻(ICP-RIE)、電子束蒸鍍等等技術,製作出金與二氧化鈦複合的各向異性手性奈米結構,並分析在各個步驟中所使用的製程參數與製作過程中碰到的各種問題。數值模擬的部分,除了以嚴格耦合波分析法(RCWA)模擬製程上金厚度與二氧化鈦厚度誤差對頻譜的影響,還模擬了不同環境折射率、不同偏振方向入射手性奈米結構時,對於圓二色性頻譜的影響。在圓二色性頻譜量測的部分,我們使用實驗室原有的史托克參數(Stokes parameters)量測方法與多數文獻以右圓偏振與左圓偏振穿透率計算的量測方法,並比較兩種量測方法在物理意義上的差異,並以這兩種量測方法進行手性檢測。在手性檢測的部分,我們測試的手性分子為色胺酸,先是以自行架設的旋光儀確認色胺酸於手性奈米結構產生圓二色性的波段無圓二色性訊號後,我們成功以右圓偏振與左圓偏振穿透率計算的量測方法,證實手性奈米結構能夠藉由侷域表面電漿產生的近場手性增益,增強手性分子的圓二色訊號,達到手性檢測的目的。

    We use dry etching method to fabricate the metasurfaces, composed of gold and titania, and discuss the fabrication parameters of every manufacture steps. To improve the yield rates, we also find out the reason of the large defects from the previous fabrication recipe in our group, and successfully improve yield rates from less than ten percentage to around seventy percentage. The metasurfaces following the fabrication steps will be robust enough to endure several times of cleaning by flowing deionized water. According to the structural parameters of the metasurfaces we made, we use rigorous coupled wave analysis (RCWA) method to simulate the optical properties of metasurfaces. For the purposes of chirality detection of chiral molecules, we emphasized on the special optical phenomenon which is called circular dichroism (CD). While the linearly polarized light, which can be express as the superposition of left circularly polarized light (LCPL) and right circularly polarized light (RCPL), interact with the chiral materials, the difference between absorption of LCPL and RCPL will cause the transmitted light cannot be still linearly but elliptically polarized light. Comparing with the CD spectrum before and after adsorbing chiral molecules, we successfully evidence the nearfield optical chirality enhancement of metasurfaces would enhance the chirality of chiral molecules, let us distinguish different chirality of molecules from each other in the wavelength ranges out of electronic and vibrational circular dichroism regions.

    摘要 i 致謝 xiii 目錄 xiv 表目錄 xvii 圖目錄 xviii 縮寫對照表 xxvii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 研究背景與文獻回顧 4 2.1 研究背景 4 2.1.1 超穎材料 4 2.1.1.1 電漿子超穎表面 6 2.1.1.2 介電質超穎表面 9 2.1.2 手性分子 11 2.1.2.1 手性分子檢測 13 2.2 文獻回顧 15 2.2.1 複合型超穎表面 15 2.2.2 超穎表面檢測手性分子 18 第三章 實驗原理與分析理論 23 3.1 乾式蝕刻(Dry etching) 23 3.2 RCWA數值模擬方法 24 3.3 極化橢圓與橢圓參數 27 3.4 Stokes parameters與Poincaré sphere 30 3.4.1 Stokes parameters量測原理與方法 34 3.5 手性光學分析 36 3.5.1 圓雙折射性 36 3.5.2 圓二色性 38 3.5.3 圓雙折射性與圓二色性關係 40 3.5.4 光學手性密度 42 第四章 元件製作與實驗量測架構 44 4.1 元件製作 44 4.1.1 儀器與材料 44 4.1.1.1 實驗儀器 44 4.1.1.2 實驗材料 45 4.1.2 母模製作與抗沾黏處理 46 4.1.2.1 母模製作 46 4.1.2.2 母模抗沾黏處理 48 4.1.3 PFPE模具 48 4.1.3.1 PFPE-UV固化溶液調配與製作 49 4.1.3.2 PFPE模具製作 49 4.1.4 超穎表面製作 50 4.2 頻譜量測架構與流程 52 4.2.1 儀器與材料 52 4.2.1.1 實驗儀器 52 4.2.1.2 實驗材料 54 4.2.2 Matlab量測程式設計 56 4.2.2.1 程式設計 56 4.2.2.2 量測點選取方法 57 4.2.3 手性分子之旋光度量測 59 4.2.4 Stokes parameters量測架構 60 4.2.5 量測架構(I)之手性檢測 63 4.2.6 量測架構(II)之手性檢測 64 4.3 檢視結構之機台 68 4.4 實驗所使用的軟體 68 第五章 實驗結果與討論 69 5.1 元件製作結果討論 69 5.1.1 母模 69 5.1.2 AMONIL 72 5.1.3 PMMA 76 5.1.4 TiO2 81 5.1.5 以單層結構取代雙層結構進行舉離 87 5.1.6 以奈米金轉印取代AMONIL壓印 88 5.1.7 鍍金位置討論 91 5.1.8 鍍金方式討論 97 5.2 模擬結果分析 99 5.2.1 頻譜與近場分析 101 5.2.2 母模結構與試片結構之頻譜差異 114 5.2.3 不同厚度的金對頻譜影響 116 5.2.4 不同厚度的二氧化鈦對頻譜影響 117 5.2.5 不同環境折射率對頻譜的影響 118 5.2.6 不同線偏振方向對頻譜的影響 122 5.3 橢圓參數量測 124 5.3.1 量測架構(I) 124 5.3.2 量測架構(II) 132 5.3.2.1 量測架構(II)量測方式討論 135 5.4 手性檢測 138 5.4.1 手性分子之旋光度量測結果 139 5.4.1.1 盛液管設計 143 5.4.2 量測架構(I)之手性檢測結果 146 5.4.3 量測架構(II)之手性檢測結果 162 第六章 結論與未來展望 174 6.1 結論 174 6.2 未來展望 175 參考文獻 177

    1. J. Wang and J. Du, "Plasmonic and Dielectric Metasurfaces: Design, Fabrication and Applications," Applied Sciences, 6(2016).
    2. L. A. Nguyen, H. He, and C. Pham-Huy, "Chiral drugs: an overview," Int. J. Biomed. Sci., 2, 85-100 (2006).
    3. W. Chen and C. Lin, "A standing-wave interpretation of plasmon resonance excitation in split-ring resonators," Opt. Express, 18, 14280-14292 (2010).
    4. 吳伯陽, "對稱不對稱U型金超穎介面的光學模擬與奈米製作與光學量測," 國立成功大學理學院光電科學與工程學系碩士論文, (2016).
    5. 歐翰融, "非對稱U型金屬奈米結構超穎介面光學特性之研究並應用於偏振轉換," 國立成功大學理學院光電科學與工程學系碩士論文, (2019).
    6. D. Kyriacos, "Brydson's Plastics Materials," Eighth ed., Butterworth-Heinemann, pp. 457-485.(2017)
    7. H.-H. Hsiao, C. H. Chu, and D. P. Tsai, "Fundamentals and Applications of Metasurfaces," Small Methods, 1(2017).
    8. U. Leonhardt, "Invisibility cup," Nat. Photonics, 1, 207-208 (2007).
    9. L. B. Hunt, "Gold based glass and enamel colours," Endeavour, 5, 61-67 (1981).
    10. B. Liu, K. Song, and J. Xiao, "Two-Dimensional Optical Metasurfaces: From Plasmons to Dielectrics," Adv. Condens. Matter Phys., 2019, 1-15 (2019).
    11. G. Das, M. L. Coluccio, S. Alrasheed, A. Giugni, M. Allione, B. Torre, G. Perozziello, P. Candeloro, and E. Di Fabrizio, "Plasmonic nanostructures for the ultrasensitive detection of biomolecules," Nuovo Cimento Rivista Serie, 39, 547 (2016).
    12. H. T. Chen, A. J. Taylor, and N. Yu, "A review of metasurfaces: physics and applications," Rep. Prog. Phys., 79, 076401 (2016).
    13. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction," Science, 334, 333 (2011).
    14. S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Material platforms for optical metasurfaces," Nanophotonics, 7, 959-987 (2018).
    15. Y. Yang, W. Wang, A. Boulesbaa, Kravchenko, II, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, "Nonlinear Fano-Resonant Dielectric Metasurfaces," Nano Lett., 15, 7388-7393 (2015).
    16. W. T. Kelvin, "Baltimore lectures on molecular dynamics and the wave theory of light," C.J. Clay and Sons.(1904)
    17. T. Eriksson, S. Bjorkman, and P. Hoglund, "Clinical pharmacology of thalidomide," Eur. J. Clin. Pharmacol., 57, 365-376 (2001).
    18. M. Nógrádi, L. Poppe, J. Nagy, G. Hornyánszky, and Z. Boros, "Stereochemistry and Stereoselective Synthesis: An Introduction," Wiley.(2016)
    19. M. North, "Principles and Applications of Stereochemistry," CRC Press.(2017)
    20. S. Yoo and Q. H. Park, "Metamaterials and chiral sensing: a review of fundamentals and applications," Nanophotonics, 8, 249-261 (2019).
    21. L. Gan and C. Zhou, "Vibrational Circular Dichroism: A New Tool for the Determination of Absolute Configuration of Chiral Molecules," Chin. J. Org. Chem., 29, 848-857 (2009).
    22. X.-D. Y. Juan WANG, "Determination of Absolute Configuration of Chiral Compounds Based on Chiroptical Spectroscopic Methods: From Instrument Characterization to Computational Chemistry," University Chemistry, 31, 37-44 (2016).
    23. F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, "Hybrid bilayer plasmonic metasurface efficiently manipulates visible light," Sci. Adv., 2, e1501168 (2016).
    24. L. Huang, C.-C. Chang, B. Zeng, J. Nogan, S.-N. Luo, A. J. Taylor, A. K. Azad, and H.-T. Chen, "Bilayer Metasurfaces for Dual- and Broadband Optical Antireflection," ACS Photonics, 4, 2111-2116 (2017).
    25. X. L. Hu, L. B. Sun, Q. J. Wu, L. S. Wang, S. A. Bai, Q. Li, S. M. Yang, R. Z. Tai, M. Mohr, H. J. Fecht, L. Q. Wang, D. X. Zhang, and J. Z. Jiang, "Broad band optical band-reject filters in near-infrared regime utilizing bilayer Ag metasurface," J. Appl. Phys., 121(2017).
    26. W. Liu, W. Wu, L. Huang, Y. Ling, C. Ba, S. Li, Z. Chun, and H. Li, "Dual-band asymmetric optical transmission of both linearly and circularly polarized waves using bilayer coupled complementary chiral metasurface," Opt. Express, 27(2019).
    27. W. Wang, L. V. Besteiro, T. Liu, C. Wu, J. Sun, P. Yu, L. Chang, Z. Wang, and A. O. Govorov, "Generation of Hot Electrons with Chiral Metamaterial Perfect Absorbers: Giant Optical Chirality for Polarization-Sensitive Photochemistry," ACS Photonics, 6, 3241-3252 (2019).
    28. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, "Ultrasensitive detection and characterization of biomolecules using superchiral fields," Nat. Nanotechnol., 5, 783-787 (2010).
    29. Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alu, "Chirality detection of enantiomers using twisted optical metamaterials," Nat. Commun., 8, 14180 (2017).
    30. A. Vazquez-Guardado and D. Chanda, "Superchiral Light Generation on Degenerate Achiral Surfaces," Phys. Rev. Lett., 120, 137601 (2018).
    31. L. T. Phan, S. M. Yoon, and M. W. Moon, "Plasma-Based Nanostructuring of Polymers: A Review," Polymers (Basel), 9(2017).
    32. S. Saito, K. Sugita, and J. Tonotani, "Effect of CHF3Addition on Reactive Ion Etching of Aluminum Using Inductively Coupled Plasma," Jpn. J. Appl. Phys., 44, 2971-2975 (2005).
    33. K.-R. Choi, J.-C. Woo, Y.-H. Joo, Y.-S. Chun, and C.-I. Kim, "Dry etching properties of TiO2 thin films in O2/CF4/Ar plasma," Vacuum, 92, 85-89 (2013).
    34. S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, "Dry etch chemistries for TiO2 thin films," Appl. Surf. Sci., 185, 27-33 (2001).
    35. P. Ho, J. E. Johannes, R. J. Buss, and E. Meeks, "Modeling the plasma chemistry of C2F6 and CHF3 etching of silicon dioxide, with comparisons to etch rate and diagnostic data," J. Vac. Sci. Technol., A, 19, 2344-2367 (2001).
    36. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A, 14, 2758-2767 (1997).
    37. C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectron. Eng., 83, 1798-1804 (2006).
    38. M. Moharam, E. Grann, D. Pommet, and T. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A:, 12, 1068-1076 (1995).
    39. D. H. Goldstein, "Polarized Light," CRC Press.(2017)
    40. S. Trippe, "Polarization and Polarimetry: A Review," J. Korean Astron. Soc., 47(2014).
    41. R. A. Chipman, W. S. T. Lam, and G. Young, "Polarized Light and Optical Systems," CRC Press.(2018)
    42. J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, "Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends," Adv. Opt. Mater., 5(2017).
    43. L. A. Nafie, "Vibrational Optical Activity: Principles and Applications," Wiley.(2011)
    44. E. Hecht, "Optics," fourth ed., Addison-Wesley.(2002)
    45. M. Schäferling, "Chiral Nanophotonics: Chiral Optical Properties of Plasmonic Systems," Springer International Publishing.(2016)
    46. L. D. Barron, "Molecular light scattering and optical activity," Cambridge University Press, (2004).
    47. Y. Tang and A. E. Cohen, "Optical chirality and its interaction with matter," Phys. Rev. Lett., 104, 163901 (2010).
    48. D. M. Lipkin, "Existence of a New Conservation Law in Electromagnetic Theory," J. Math. Phys., 5, 696-700 (1964).
    49. M. L. Solomon, A. A. E. Saleh, L. V. Poulikakos, J. M. Abendroth, L. F. Tadesse, and J. A. Dionne, "Nanophotonic Platforms for Chiral Sensing and Separation," Acc. Chem. Res., 53, 588-598 (2020).
    50. W. A. Paiva-Marques, F. Reyes Gomez, O. N. Oliveira, Jr., and J. R. Mejia-Salazar, "Chiral Plasmonics and Their Potential for Point-of-Care Biosensing Applications," Sensors (Basel), 20(2020).
    51. Z. Li, M. Mutlu, and E. Ozbay, "Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission," J. Opt., 15(2013).
    52. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, 79(2009).
    53. J. H. Liaw, T. Y. Hsueh, T.-S. Tan, Y. Wang, and S.-M. Chiao, "Twin-screw compounding of poly(methyl methacrylate)/clay nanocomposites: effects of compounding temperature and matrix molecular weight," Polym. Int., 56, 1045-1052 (2007).
    54. M. D. Tyona, "A theoritical study on spin coating technique," Adv. Mater. Res., 2, 195-208 (2013).
    55. 尤勝加, "以金屬輔助化學蝕刻高深寬比矽奈米結構應用於高效率膀胱上皮癌細胞捕捉," 國立成功大學理學院光電科學與工程學系碩士論文, (2018).
    56. 王家豪, "利用奈米壓印微影術和金屬輔助化學蝕刻製作週期性奈米圓錐結構應用於寬頻完美吸收體," 國立成功大學理學院光電科學與工程學系碩士論文, (2020).
    57. E. D. Palik, "Handbook of Optical Constants of Solids," Vol. 1, Elsevier Science.(1998)
    58. W. Y. Chen, C. H. Lin, and W. T. Chen, "Plasmonic phase transition and phase retardation: essential optical characteristics of localized surface plasmon resonance," Nanoscale, 5, 9950-9956 (2013).
    59. H. F. O. Humbach, U. Grzesik, U. Haken, W. Heitmann,, "Analysis of OH absorption bands in synthetic silica," J. Non-Cryst. Solids, 203, 19-26 (1996).
    60. B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, "Measuring the Stokes polarization parameters," Am. J. Phys., 75, 163-168 (2007).

    無法下載圖示 校內:2026-10-05公開
    校外:2026-10-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE