| 研究生: |
劉育誠 Liu, Yu-Cheng |
|---|---|
| 論文名稱: |
航空替代燃油之製程模擬與技術經濟分析 Process Simulation and Techno-economic Analysis of Renewable Aviation Fuel |
| 指導教授: |
潘大知
Pan, D. |
| 共同指導教授: |
王偉成
Wang, Wei-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 再生航空燃油 、製程模擬 、經濟技術分析 、熱裂解製程 、加氫反應製程 、費托合成 、加氫裂解/異構化製程 |
| 外文關鍵詞: | Renewable jet fuel, Process simulation, Techno-economic Analysis, Pyrolysis, Fisher-Tropsch, Hydro-processing, Hydro-cracking/isomerization |
| 相關次數: | 點閱:99 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生質物為原料有許多種選擇,如芒草、椰子殼、玉米稈、稻殼等。在本研究中所使用的原料為稻殼為台灣常見的農業廢棄物,利用製程模擬配合經濟技術分析比較由費托與熱裂解製程所生產出航空替代燃油之性能與經濟效益。每天處理量600噸的情況下由費托與熱裂解製程所得到之最低再生航空燃油售價分別為每公升3.21美元與2.20美元。利用敏感度分析可以得到原料價格為影響售價的主要變因,當原料價格變動0.1美元時則會對再生航空燃油售價產生約30 %的影響。生產再生航空燃油的過程中,在費托與熱裂解製程中所花費最大的部分分別為加氫裂解/異構化步驟與加氫脫氧過程。在兩個製程中,費托製程所得到的最終能量比熱裂解製程高了16%且碳收益率也高了10 %。邊際成本與平均總成本的結果顯示當處理量超過一萬噸,對於再生航空燃油的售價將不再有太大的變化,且由先鋒廠分析可以得到由費托製程所生產出之再生航空燃油售價為每公升3.1美元,熱裂解製程所生產出之售價為每公升4.9美元,可以得知熱裂解製程的潛在風險比費托製程高。油品性質分析顯示費托製程所生產出之再生航空燃油與航空燃油標準規範相符而由熱裂解製程所生產出之再生航空燃油則相似於標準規範,以結果而言由熱裂解所生產之再生航空燃油具有開發的潛力。
There are multiple choices of biomass feedstock, for example mischantus, coconut shell, corn stoves, rice husks, and etc. In this work, rice husk was selected as the feedstock, which is an agricultural waste in Taiwan. This techno-economic analysis (TEA) model compares the property and economic of the renewable jet fuel (RJF) produced by the Fisher-Trop (FT) and pyrolysis process. The minimum jet fuel-selling price (MJSP) of $2.20/L and $3.21/L for FT and pyrolysis process based on using rice husk as feedstock with a capacity of 600 tonnes per day. Sensitivity analysis shows that if the feedstock price changes to $0.1/kg, the increases of MJSP in about 30 %. The highest cost during the FT process is the hydro-cracking/isomerization process and for the pyrolysis to process is the hydro-processing process. The energy producing from FT process is 16 % higher than the pyrolysis process and the carbon yield is 10 % higher than pyrolysis to RJF process. Marginal cost (MC) and average total cost (ATC) show that, when the plant capacity is more than 10,000 tonnes per day, the prices will not change significantly. In addition, pioneer plant analysis also indicates the MJSP of FT is $3.1/L and for pyrolysis process is $4.9/L. These results represent that the potential risk of pyrolysis process is much higher. The properties produced by the FT process is similar to the jet fuel standards and for pyrolysis process are trend to the standards instead of the flash point. Overall, the process of pyrolysis has the potential for RJF development.
1. U.S. Energy Information Administration (EIA). 19/2/2017]; Available from: https://www.eia.gov/.
2. IEA. Key world energy statistics: International Energy Agency. [cited 2016; Available from: https://www.iea.org/.
3. ICAO. Environmental report. Montreal: Destination Green;. 2013: Environment Branchof the International Civil Aviation Organization (ICAO.
4. IATA. A global approach to reducing aviation emissions. [cited 8/6/2009; Available from: http://www.iata.org/pressroom/pr/Pages/2009-06-08-03.aspx.
5. Rahmes, T., et al. Sustainable bio-derived synthetic paraffinic kerosene (Bio-SPK) jet fuel flights and engine tests program results. in 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO) and Aircraft Noise and Emissions Reduction Symposium (ANERS). 2009.
6. Jiménez‐Díaz, L., et al., Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives. Microbial biotechnology, 2017. 10(1): p. 103-124.
7. Liu, G., B. Yan, and G. Chen, Technical review on jet fuel production. Renewable and Sustainable Energy Reviews, 2013. 25: p. 59-70.
8. Kinder, J.D. and T. Rahmes, Evaluation of bio-derived synthetic paraffinic kerosene (Bio-SPK). Sustainable Biofuels Research & Technology Program, 2009.
9. Products, A.C.D.o.P. and Lubricants, Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons. 2014: ASTM International.
10. KLM, Sustainable biofuels – road to sustainable biofuels. 2012.
11. Flask, R., Practical trial of biosynthetic fuel by Lufthansa successful. World Airnews, 2012. 40(1).
12. Hari, T.K., Z. Yaakob, and N.N. Binitha, Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renewable and Sustainable Energy Reviews, 2015. 42: p. 1234-1244.
13. Milton, B., World Jet Fuel Specifications with Avgas Supplement. 2005, Leatherhead, UK: ExxonMobil Aviation International Ltd.
14. Mawhood, R., et al., Production pathways for renewable jet fuel: a review of commercialization status and future prospects. Biofuels, Bioproducts and Biorefining, 2016. 10(4): p. 462-484.
15. (MASBI), M.A.S.B.I. Introduction to Aviation Biofuels. 2017; Available from: http://www.masbi.org/#home.
16. Pearlson, M., C. Wollersheim, and J. Hileman, A techno‐economic review of hydroprocessed renewable esters and fatty acids for jet fuel production. Biofuels, Bioproducts and Biorefining, 2013. 7(1): p. 89-96.
17. You, F. and B. Wang, Life cycle optimization of biomass-to-liquid supply chains with distributed–centralized processing networks. Industrial & Engineering Chemistry Research, 2011. 50(17): p. 10102-10127.
18. Dry, M.E., Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Applied Catalysis A: General, 1996. 138(2): p. 319-344.
19. Hui, X., et al., Experimental studies on the combustion characteristics of alternative jet fuels. Fuel, 2012. 98: p. 176-182.
20. Brown, T.R., et al., Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing. Fuel, 2013. 106: p. 463-469.
21. Wright, M.M., et al., Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel, 2010. 89: p. S2-S10.
22. Thilakaratne, R., et al., Mild catalytic pyrolysis of biomass for production of transportation fuels: a techno-economic analysis. Green Chemistry, 2014. 16(2): p. 627-636.
23. Li, W., et al., Techno-economic analysis of the stabilization of bio-oil fractions for insertion into petroleum refineries. ACS Sustainable Chemistry & Engineering, 2017. 5(2): p. 1528-1537.
24. Yao, G., et al., Stochastic techno-economic analysis of alcohol-to-jet fuel production. Biotechnology for biofuels, 2017. 10(1): p. 18.
25. Diederichs, G.W., et al., Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice. Bioresource technology, 2016. 216: p. 331-339.
26. Tao, L., et al., Techno-economic and resource analysis of hydroprocessed renewable jet fuel. Biotechnology for biofuels, 2017. 10(1): p. 261.
27. Swanson, R.M., et al., Techno-economic analysis of biomass-to-liquids production based on gasification. Fuel, 2010. 89: p. S11-S19.
28. Atsonios, K., et al., Alternative thermochemical routes for aviation biofuels via alcohols synthesis: process modeling, techno-economic assessment and comparison. Applied Energy, 2015. 138: p. 346-366.
29. De Jong, S., et al., The feasibility of short‐term production strategies for renewable jet fuels–a comprehensive techno‐economic comparison. Biofuels, Bioproducts and Biorefining, 2015. 9(6): p. 778-800.
30. Daudin, A., L. Bournay, and T. Chapus, Method of converting effluents of renewable origin into fuel of excellent quality by using a molybdenum-based catalyst. 2013, Google Patents.
31. Venderbosch, R., et al., Stabilization of biomass‐derived pyrolysis oils. Journal of Chemical Technology & Biotechnology, 2010. 85(5): p. 674-686.
32. Elliott, D.C., et al., Catalytic hydroprocessing of biomass fast pyrolysis bio‐oil to produce hydrocarbon products. Environmental Progress & Sustainable Energy: An Official Publication of the American Institute of Chemical Engineers, 2009. 28(3): p. 441-449.
33. Kiss, A.A., J. David, and P. Suszwalak, Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Separation and Purification Technology, 2012. 86: p. 70-78.
34. Gulsby, J.G., Low temperature process for separating propane and heavier hydrocarbons from a natural gas stream. 1981, Google Patents.
35. American Water Works Company, Inc. [US]. Available from: https://amwater.com/njaw/.
36. Snehesh, A.S., et al., Fischer-Tropsch route for the conversion of biomass to liquid fuels-Technical and economic analysis. Energy, 2017. 130: p. 182-191.
37. Tijmensen, M.J., et al., Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass and Bioenergy, 2002. 23(2): p. 129-152.
38. Katofsky, R.E., The production of fluid fuels from biomass. 1993, Princeton University.
39. Kalani, M. and R. Yunus, Application of supercritical antisolvent method in drug encapsulation: a review. International journal of nanomedicine, 2011. 6: p. 1429.
40. Davis, R., Techno-economic analysis of current technology for Fischer-Tropsch fuels production. National Renewable Energy Laboratory for EPA, 2009.
41. Tavasoli, A., et al., Fischer–Tropsch synthesis on mono-and bimetallic Co and Fe catalysts supported on carbon nanotubes. Fuel Processing Technology, 2009. 90(12): p. 1486-1494.
42. Jacobs, G., et al., Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Applied Catalysis A: General, 2002. 233(1-2): p. 263-281.
43. Yang, Y., et al., Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer–Tropsch synthesis. Applied Catalysis A: General, 2004. 266(2): p. 181-194.
44. Brent Gordon, Analysis for financial management. 2012: Douglas Reiner.
45. Guthrie, K.M., Process plant estimating, evaluation, and control. 1974: Craftsman Book Company of America.
46. Committee, E.C.A. The price of the rice husk. 2017 12/31/2017]; Available from: https://m.coa.gov.tw/About/About.aspx.
47. CPC Corporation, T. The price of the natural gas in Taiwan 2017 02/11/2017]; Available from: https://new.cpc.com.tw/division/mb/.
48. Taiwan Water Corporation. The price of the water in Taiwan 2017 31/12/2017]; ]. Available from: https://www.water.gov.tw/mp.aspx?mp=1.
49. Taiwan Power Company. The price of the electricity in Taiwan. 2017 31/12/2017]; Available from: https://www.taipower.com.tw/.
50. Pedersen, T.H., et al., Renewable hydrocarbon fuels from hydrothermal liquefaction: A techno‐economic analysis. Biofuels, Bioproducts and Biorefining, 2018.
51. Aplus-ins Industrial Co.Ltd. The price of the Hydrotreating catalyst (NiMO). 2017 31/12/2017]; Available from: https://tw.taiwantrade.com/company/crm/53461348.
52. Kam Industrial Co., L. Chloride ingot, HClO. 2017 30/12/2017]; Available from: http://asia.rotekwater.com/.
53. CPC Corporation. Price of propane. 2018 01/12/2018]; Available from: https://new.cpc.com.tw/division/mb/oil-more8.aspx.
54. United Air System Co., L. The price of the nitrogen. 2017 31/12/2017]; Available from: http://www.unitedairsystems.com/.
55. Jining Shanneng Industrial and Mining Equipment Co., L. Activated carbon). 31/12/2017 [cited 2017; Available from: http://wsdsngk.cn.made-in-china.com/.
56. Hu, W., et al., Comparative techno-economic analysis of advanced biofuels, biochemicals, and hydrocarbon chemicals via the fast pyrolysis platform. Biofuels, 2016. 7(1): p. 57-67.
57. Zhang, Y., et al., Techno-economic analysis of monosaccharide production via fast pyrolysis of lignocellulose. Bioresource technology, 2013. 127: p. 358-365.
58. Dongguan Hongbao Electromechanical Technology Co., L. Nitrogen Compressor. 2017 [cited 31/12/2017.
59. Yu Sheng Industrial Co. Ltd. Compressor. 2017 31/12/2017]; Available from: http://www.yushern.com.tw/index.html.
60. Beston (Henan) Machinery Co., L. Distillation Plant. 2017 31/12/2017]; Available from: Http://www.bestongroup.com.
61. LTD., S.C. Dryer. 2017 [cited 31/12/2017.
62. Yancheng Hao Kai Machinery Co. Ltd. Liquid Heater. 2017 31/12/2017]; Available from: https://ycshkjx.1688.com/.
63. Qingdao Xintai Pressure Vessel Co., L. Hydrotreating Reactor,Oil Storage Tank. 2017 31/12/2017]; Available from: http://www.qdxintai.com.cn/.
64. Physical Agriculture Machinery Co., L. Liquid Pump. 2017 31/12/2017]; Available from: http://www.wulipump.com/.
65. Suzhou Hengda Purification Equipment Co., L. PSA oxygen machine. 31/12/2017; Available from: Http://www.szhdjh.com.cn.
66. Shangqiu City Haiqi Machinery Equipment Co., L., Gasification reactor. 31/12/2017.
67. Suzhou Bucks Purification Equipment Co., L. PSA hydrogen. 31/12/2017 [cited 2017; Available from: http://m.912688.com/b2b-33408230301f814/.
68. Yancheng Chechen Environmental Engineering Co., L. Condenser. 2017 31/12/2017]; Available from: https://shop1490029959023.1688.com.
69. Xinxiang City, C.a.J.F.C., Ltd.,. Vapor-Liquid Separator. 2017 31/12/2017]; Available from: https://huayufilter.cnal.com/.
70. Zhengzhou Tianyi Extraction Technology Co., L. Oil-water separator. 2017 [cited 31/12/2017.
71. Taiwan Tube Co., L. Valve. 2017 31/12/2017]; Available from: www.tvfco.com.tw.
72. Qingdao Xintai Pressure Vessel Co., L. Gas Storage Tank. 2017 31/12/2017]; Available from: http://www.qdxintai.com.cn/.
73. department, L.D.s.-h.e.p.a.s. Solid Storage Tank. 31/12/2017; Available from: http://zlw574439667.51sole.com/.
74. Peters, M.S., Plant Design and Economics for Chemical Engineers. Fourth ed. 1991, New York: McGraw-Hill, Inc.
75. Wang, L., et al., Economic and GHG emissions analyses for sugarcane ethanol in Brazil: looking forward. Renewable and Sustainable Energy Reviews, 2014. 40: p. 571-582.
76. Goverment, N.T.C. Engineering and supervision. 2017 [cited 31/12/2017; Available from: http://www.cop.ntpc.gov.tw/.
77. Directorate-General of Personnel Administration, E.Y. Operating Hours. 2017 31/12/2017]; Available from: https://www.dgpa.gov.tw/.
78. Plant Design & Economics for Chemical Engineers. Working capital. 2017 31/12/2017]; Available from: http://highered.mheducation.com/sites/0072392665/index.html.
79. Zhang, Y., et al., Techno-economic analysis of two bio-oil upgrading pathways. Chemical Engineering Journal, 2013. 225: p. 895-904.
80. Cheah, K.W., et al., Process simulation and techno economic analysis of renewable diesel production via catalytic decarboxylation of rubber seed oil–A case study in Malaysia. Journal of Environmental Management, 2017.
81. eTax Portal, M.o.F. Tax. 2017 31/12/2017]; Available from: https://www.etax.nat.gov.tw/.
82. Park, T.C. Aspen Physical Property System 2006 [cited 2006; Available from: https://www.aspentech.com/.
83. Pedersen, T.H., et al., Renewable hydrocarbon fuels from hydrothermal liquefaction: A techno‐economic analysis. Biofuels, Bioproducts and Biorefining, 2018. 12(2): p. 213-223.
84. Glisic, S.B., J.M. Pajnik, and A.M. Orlović, Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production. Applied Energy, 2016. 170: p. 176-185.
85. Bann, S.J., et al., The costs of production of alternative jet fuel: a harmonized stochastic assessment. Bioresource technology, 2017. 227: p. 179-187.
86. Cheah, K.W., et al., Process simulation and techno economic analysis of renewable diesel production via catalytic decarboxylation of rubber seed oil–A case study in Malaysia. Journal of environmental management, 2017. 203: p. 950-961.
87. Merrow, E.W., K. Phillips, and C.W. Myers, Understanding cost growth and performance shortfalls in pioneer process plants. 1981: Rand Corporation.
88. Anex, R.P., et al., Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 2010. 89: p. S29-S35.
89. Merrow, E.W., Linking R&D to problems experienced in solids processing. 1984, RAND CORP SANTA MONICA CA.
90. Li, X., E. Mupondwa, and L. Tabil, Technoeconomic analysis of biojet fuel production from camelina at commercial scale: Case of Canadian Prairies. Bioresource technology, 2018. 249: p. 196-205.
校內:2023-09-01公開