| 研究生: |
蔡健儀 Cai, Jian-Yi |
|---|---|
| 論文名稱: |
脊髓損傷大白鼠其肌肉張力之生物力學及肌電訊號評估 Biomechanical and Electromyographic Analyses of Muscle Tone for Spinal Cord Injured Rats |
| 指導教授: |
陳家進
Chen, Jia-Jin Jason |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 36 |
| 中文關鍵詞: | 肌肉張力 、痙攣 、肌電訊號 、脊髓損傷 |
| 外文關鍵詞: | Muscle tone, Spasticity, Spinal cord injury, Electromyography |
| 相關次數: | 點閱:88 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肌肉痙攣(spasticity)為一種臨床的症狀,常發生在上運動神經元(upper motor neuron)損傷所造成的病人身上。本研究目的主要是建立一套可攜式肌肉張力評估系統(miniature manual stretching device)來測量第八節胸椎半邊脊髓損傷之大白鼠上(T8 hemisection)時間進程(time-course)的相關研究。此套可攜式肌肉張力評估系統主要利用其兩邊氣球壓力差轉為反應力矩(reactive torque)並且利用光纖角度感測器(optic device)來紀錄在五種不同頻率(1/3,1/2,1,3/2,2赫茲)下牽張大白鼠後肢所得到的資訊。利用肌肉模擬二階微分方程式模型(second-order biomechanical model),反應力矩(reactive torque)與角度位移(angle displace)可以得到大白鼠踝關節的黏性(viscous)與彈性(elastic)特質。在脊髓損傷之大白鼠踝關節,測量結果顯示痙攣的上升有隨高速牽張而增加(velocity-dependent)的情形。此外,從時間進程來看,本研究測量開刀前與開刀後兩個月的變化量,研究發現7天後,可以初步測量出痙攣性大白鼠患側較正常鼠有肌肉張力上升情形,並隨不同牽張頻率上升(1/3,1/2,1,3/2,2赫茲)下,黏性(B)及剛性(stiffness)有上升趨勢。此種趨勢跟電生理方面,測量其均方根(RMS)及振幅(amplitude)有同樣的情形。因此,對於量化肌肉張力,已有穩定的動物模型及評估系統平台,在未來能夠用來評估新的藥物或治療方法運用在痙攣性大白鼠上,使其更了解其病理學機制,並評估新方法的有效性。
Spasticity is one of clinical symptoms often seen in patients with central nerve system lesion. The purpose of this study was to establish a miniature muscle tone assessment device to quantify the time-course changes of muscle tone for animal following spinal cord injury (SCI) of T8 hemisection. The miniature manual stretching device measured the reactive torque using a pair of pressure sensing balloon and angular displacement using optic device at different stretching frequencies (1/3, 1/2, 1, 3/2 and 2 Hz). Based on the second-order biomechanical model, the reactive torque and angular displace were used to derive the viscous and elastic components to represent the viscosity and stiffness of rat’s ankle joint. The measured muscle tone increased at higher stretching velocities which indicate the velocity-dependent spasticity occurs after SCI injury in the rat model. From time-course measurements before and after 56 days following SCI, our observation showed that the muscle tone first increased and reached a peak value around postinjury 21 days and slightly decreased afterwards. The changes of muscle tone can also be verified from electrophysiological evaluations of electromyography. In conclusion, the miniaturized devices we have developed provide a method for objective quantitative biomechanical assessment of muscle tone and joint stiffness in the SCI rat. Such quantification of the time course of biomechanical changes in SCI rat has the potential to be very useful for the assessment of the effectiveness of novel treatments for SCI.
01. Antri M, Orsal D, Barthe JY (2002) Locomotor recovery in the chronic spinal rat: effects of long-term treatment with a 5-HT2 agonist. Eur J Neurosci 16:467-476.
02. Ballermann M, Fouad K (2006) Spontaneous locomotor recovery in spinal cord injured rats is accompanied by anatomical plasticity of reticulospinal fibers. Eur J Neurosci 23:1988-1996.
03. Ballermann M, Tse AD, Misiaszek JE, Fouad K (2006) Adaptations in the walking pattern of spinal cord injured rats. J Neurotrauma 23:897-907.
04. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1-21.
05. Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139:244-256.
06. Bose P, Parmer R, Thompson FJ (2002) Velocity-dependent ankle torque in rats after contusion injury of the midthoracic spinal cord: time course. J Neurotrauma 19:1231-1249.
07. Chen JJ, Wu YN, Huang SC, Lee HM, Wang YL (2005) The use of a portable muscle tone measurement device to measure the effects of botulinum toxin type a on elbow flexor spasticity. Arch Phys Med Rehabil 86:1655-1660.
08. Diamantopoulos E, Zander Olsen P (1967) Excitability of motor neurones in spinal shock in man. J Neurol Neurosurg Psychiatry 30:427-431.
09. Dickinson SL, Longman DA, Slater P (1982) A method for measuring drug-induced changes in limb muscle tone in the rat. J Neurosci Methods 5:195-200.
10. Faden AI, Gannon A, Basbaum AI (1988) Use of serotonin immunocytochemistry as a marker of injury severity after experimental spinal trauma in rats. Brain Res 450:94-100.
11. Fischer DA, Ferger B, Kuschinsky K (2002) Discrimination of morphine- and haloperidol-induced muscular rigidity and akinesia/catalepsy in simple tests in rats. Behav Brain Res 134:317-321.
12. Foran JR, Steinman S, Barash I, Chambers HG, Lieber RL (2005) Structural and mechanical alterations in spastic skeletal muscle. Dev Med Child Neurol 47:713-717.
13. Gale K, Kerasidis H, Wrathall JR (1985) Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment. Exp Neurol 88:123-134.
14. Hefferan MP, Fuchigami T, Marsala M (2006) Development of baclofen tolerance in a rat model of chronic spasticity and rigidity. Neurosci Lett 403:195-200.
15. Hiersemenzel LP, Curt A, Dietz V (2000) From spinal shock to spasticity: neuronal adaptations to a spinal cord injury. Neurology 54:1574-1582.
16. Ivanhoe CB, Reistetter TA (2004) Spasticity: the misunderstood part of the upper motor neuron syndrome. Am J Phys Med Rehabil 83:S3-9.
17. Jinks SL, Dominguez CL, Antognini JF (2005) Drastic decrease in isoflurane minimum alveolar concentration and limb movement forces after thoracic spinal cooling and chronic spinal transection in rats. Anesthesiology 102:624-632.
18. Johnels B, Steg G (1982) A mechanographic method for measurement of muscle tone in the conscious rat. The calf muscle stretch response in reserpine-induced rigidity. J Neurosci Methods 6:1-16.
19. Kaegi S, Schwab ME, Dietz V, Fouad K (2002) Electromyographic activity associated with spontaneous functional recovery after spinal cord injury in rats. Eur J Neurosci 16:249-258.
20. Kakinohana O, Hefferan MP, Nakamura S, Kakinohana M, Galik J, Tomori Z, Marsala J, Yaksh TL, Marsala M (2006) Development of GABA-sensitive spasticity and rigidity in rats after transient spinal cord ischemia: a qualitative and quantitative electrophysiological and histopathological study. Neuroscience 141:1569-1583.
21. Katz RT, Rymer WZ (1989) Spastic hypertonia: mechanisms and measurement. Arch Phys Med Rehabil 70:144-155.
22. Knutsson E, Martensson A (1985) Isokinetic measurements of muscle strength in hysterical paresis. Electroencephalogr Clin Neurophysiol 61:370-374.
23. Ko HY, Ditunno JF, Jr., Graziani V, Little JW (1999) The pattern of reflex recovery during spinal shock. Spinal Cord 37:402-409.
24. Kolasiewicz W, Baran J, Wolfarth S (1987) Mechanographic analysis of muscle rigidity after morphine and haloperidol: a new methodological approach. Naunyn Schmiedebergs Arch Pharmacol 335:449-453.
25. Kwon BK, Oxland TR, Tetzlaff W (2002) Animal models used in spinal cord regeneration research. Spine 27:1504-1510.
26. Lance JW (1981) Disordered muscle tone and movement. Clin Exp Neurol 18:27-35.
27. Lance JW, Burke D (1974) Mechanisms of spasticity. Arch Phys Med Rehabil 55:332-337.
28. Lee HM, Huang YZ, Chen JJ, Hwang IS (2002) Quantitative analysis of the velocity related pathophysiology of spasticity and rigidity in the elbow flexors. J Neurol Neurosurg Psychiatry 72:621-629.
29. Lee HM, Chen JJ, Ju MS, Lin CC, Poon PP (2004) Validation of portable muscle tone measurement device for quantifying velocity-dependent properties in elbow spasticity. J Electromyogr Kinesiol 14:577-589.
30. Leis AA, Kronenberg MF, Stetkarova I, Paske WC, Stokic DS (1996) Spinal motoneuron excitability after acute spinal cord injury in humans. Neurology 47:231-237.
31. Marsala M, Hefferan MP, Kakinohana O, Nakamura S, Marsala J, Tomori Z (2005) Measurement of peripheral muscle resistance in rats with chronic ischemia-induced paraplegia or morphine-induced rigidity using a semi-automated computer-controlled muscle resistance meter. J Neurotrauma 22:1348-1361.
32. Mayer NH (1997) Clinicophysiologic concepts of spasticity and motor dysfunction in adults with an upper motoneuron lesion. Muscle Nerve Suppl 6:S1-13.
33. Metz GA, Merkler D, Dietz V, Schwab ME, Fouad K (2000) Efficient testing of motor function in spinal cord injured rats. Brain Res 883:165-177.
34. Muir GD, Whishaw IQ (2000) Red nucleus lesions impair overground locomotion in rats: a kinetic analysis. Eur J Neurosci 12:1113-1122.
35. Pospiech J, Pajonk F, Stolke D (1995) Epidural scar tissue formation after spinal surgery: an experimental study. Eur Spine J 4:213-219.
36. Schouenborg J, Holmberg H, Weng HR (1992) Functional organization of the nociceptive withdrawal reflexes. II. Changes of excitability and receptive fields after spinalization in the rat. Exp Brain Res 90:469-478.
37. Sheean G (2002) The pathophysiology of spasticity. Eur J Neurol 9 Suppl 1:3-9; dicussion 53-61.
38. Sun TY, Lin TS, Chen JJ (1999) Multielectrode surface EMG for noninvasive estimation of motor unit size. Muscle Nerve 22:1063-1070.
39. Thompson FJ, Parmer R, Reier PJ (1998) Alteration in rate modulation of reflexes to lumbar motoneurons after midthoracic spinal cord injury in the rat. I. Contusion injury. J Neurotrauma 15:495-508.
40. Thompson FJ, Browd CR, Carvalho PM, Hsiao J (1996) Velocity-dependent ankle torque in the normal rat. Neuroreport 7:2273-2276.
41. Voerman GE, Gregoric M, Hermens HJ (2005) Neurophysiological methods for the assessment of spasticity: the Hoffmann reflex, the tendon reflex, and the stretch reflex. Disabil Rehabil 27:33-68.
42. Webb AA, Muir GD (2002) Compensatory locomotor adjustments of rats with cervical or thoracic spinal cord hemisections. J Neurotrauma 19:239-256.
43. Wu YN, Hyland BI, Chen JJ (2007) Biomechanical and electromyogram characterization of neuroleptic-induced rigidity in the rat. Neuroscience.
44. Zhang LQ, Chung SG, Bai Z, Xu D, van Rey EM, Rogers MW, Johnson ME, Roth EJ (2002) Intelligent stretching of ankle joints with contracture/spasticity. IEEE Trans Neural Syst Rehabil Eng 10:149-157.