簡易檢索 / 詳目顯示

研究生: 林宜良
Lin, Yi-Liang
論文名稱: 應用數位微流體技術於產生奈升級液滴之探討
Creation of Nano-Liter Droplets Based on Digital Microfluidics
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 65
中文關鍵詞: 介電潤濕效應微流體力學實驗室晶片微機電數位微流體晶片
外文關鍵詞: Electro-Wetting-On-Dielectric, Digital Microfluidic Chips, EWOD, MEMS, Microfluidics
相關次數: 點閱:126下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討應用數位微流體技術於產生奈升級液滴,以介電潤濕法(electrowetting on dielectric)方式開發微流體系統元件的晶片設計與製作。此晶片優點為只需藉由液滴所接觸之電極表面電壓變化,即可由液體儲存槽中產生一奈升液滴。若將本晶片應用在微流體系統中,則可以取代微流體系統中的微制動器與微混合器結構,降低製程難度與成本。若應用於實驗室晶片平台(lab-on-a-chip)、微分析晶片(micro total analysis system)則可減少樣本體積、降低成本、可拋棄式與可攜式等優點。首先討論液滴在不同介電材料表面的接觸角變化,以選擇低驅動電壓之材料為晶片介電層。其次,實現數位微流體晶片中的四種基本操作:傳輸(transporting)、分離(cutting)、混合(merging)與產生(creating)。接著探討液滴在不同電極尺寸大小與通道高度情形下,所分離出液滴體積大小。
    本文數位微流體晶片使用微機電製程技術所製作,控制系統則使用單晶片ATmega 8535控制8個電極輸出埠,依不同介電材料在大氣環境下,其最小驅動電壓分別為:聚對二甲基苯(Parylene C) 80 VDC、氧化矽50 VDC與氮化矽30 VDC,當外加矽油(silicon oil)將液滴表面包覆時,則能有效將驅動電壓分別降低為:聚對二甲基苯50 V DC、氧化矽30 VDC與氮化矽15 VDC,此外矽油還可以有效減緩奈升液滴揮發速率。降低驅動電壓可以避免介電層崩潰所造成之電解現象,使晶片的應用性更為廣泛,而減緩液滴於大氣環境下揮發速率,則可以使液滴有較佳的可移動時間與量測應用。

    In this work, the development of digital microfluidic devices based on EWOD (electrowetting on dielectric) to create nano-liter droplets is presented. By altering electric voltage on contact electrodes, the device is able to create nano-liter droplets from the reservoir, which could be applied to microfluidic systems in replacement of micro-actuators and micro-mixers to facilitate the fabrication process, reduce the volume of samples and lower the cost. Besides, it is disposable and portable. First, we investigate the change of contact angle of a droplet upon different dielectric materials to choose the optimal material for the dielectric layer. Second, four basic operations of digital microfluidic devices are performed: transporting, cutting, merging and creating. Finally, we analyze the size of droplets created by different sizes of the electrodes and heights of the channel gaps.
    The digital microfluidic devices are fabricated using MEMS process and driven by microcontroller ATmega8535. The initial driving voltages of the droplet for Parylene, oxide and nitride are 80 VDC, 50 VDC, 30 VDC, respectively. When the droplet is covered by a layer of silicon oil, the initial driving voltage reduces to 50 VDC, 30 VDC and 15 VDC for Parylene, oxide and nitride, respectively, and the evaporation rate of the droplet decreases. The reduction in driving voltage could avoid the electrolysis resulting from the breakdown of dielectric layer and expand the application of the device. In addition, the improvement of evaporation rate could grant the droplet longer move time and application.

    目 錄 摘 要 I Abstract II 致 謝 III 目 錄 IV 圖 目 錄 VII 表 目 錄 X 符 號 表 XI 第一章 緒 論 1 1-1 研究動機 1 1-2數位微流體晶片的發展 4 1-3 EWOD基礎公式探討 11 1-3-1電雙層(Electric Bouble Layer) 12 1-3-2 Lippman's Equation 12 1-3-3 Young’s Equation 13 1-3-4 EWOD於兩平板下之等效電路 15 1-3.5 驅動力(Actuation Force) 16 1-4 四種微流體基本操作 19 1-5論文架構 21 第二章 製程方法與實驗設計 22 2-1 儀器設備 22 2-2 製程方法 24 2-2-1 基材清潔 26 2-2-2 絕緣層製作(矽晶圓) 28 2-2-3 金屬蒸鍍 28 2-2-4 黃光微影製程 29 2-2-5 介電薄膜沉積 32 2-2-6 表面疏水層製作 33 2-3 控制電路設計 36 2-4 介電薄膜探討 38 2-4-1 介電薄膜厚度與驅動電壓關係 38 2-4-2 不同介電材料下液滴接觸角之變化 39 2-5 晶片尺寸設計 40 第三章 結果與討論 43 3-1介電薄膜厚度與驅動電壓結果 43 3-2 接觸角變化理論曲線與實驗曲線比較結果 45 3-3 實現數位微流體四種動作 47 3-4 產生奈升液滴 54 第四章 結論與展望 61 4-1 結論 61 4-2 展望 61 參考文獻 62 自 述 65

    [1] 莊慧明, “生物晶片”, 產業調查與技術一四一期, pp. 1-25
    [2] http://www.biochipmaster.com/
    [3] D. Reyes, D. Iossifidis, P. Auroux, A. Manz, “Micro total analysis systems. Part 1. Introduction, theory, and technology”, Anal. Chem. 74 (2002) 2623–2636.
    [4] P. Auroux, D. Iossifidis, D. Reyes, A. Manz, “Micro total analysis systems. Part 2. Analytical standard operations and applications”, Anal. Chem. 74 (2002) 2637–2652.
    [5] A. Tudos, G. Besselink, R. Schasfoort, “Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry”, Lab Chip 1 (2001) 83–95.
    [6] E. Verpoorte, “Microfluidic chips for clinical and forensic analysis”, Electrophoresis 23 (2002) 677–712.
    [7] A. van den Berg, T. Lammerink, “Micro total analysis systems: microfluidic aspects, integration concept and applications”, Top. Curr. Chem. 194 (1998) 21–49.
    [8] A. Darion, M. Sequeira, G. Pennarun-Thomas, H. Dirac, J. Krog, P. Gravensen, J. Lichtenberg, D. Diamond, E. Verpoorte, N. de Rooij, “Chemical sensing using an integrated microfluidic system based on the Berthelot reaction”, Sensors and. Actuators B 76 (2001) 235–243.
    [9] E. Verpoorte, B. van der Schoot, S. Jeanneret, A. Manz, “3-dimensional micro-flow manifolds for miniaturized chemical analysis systems”, J. Micromech. Microeng. 4 (1994) 246–256.
    [10] J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. Effenhauser, A. Manz, “Micromachning a miniaturized capillary electrophoresis-based chemical analysis system on chip”, Science 261 (1993) 895–897.
    [11] S. Liu, Y. Shi, W.W. Ja, R.A. Mathies, “Optimization of high-speed DNA sequencing on microfabricated capillary electrophoresis channels”, Anal. Chem. 71 (1999) 566–573.
    [12] R. Mathies, P. Simpson, A. Woolley, “DNA Analysis with Capillary Array Electrophoresis Microplates”, MicroTAS, Banff, Canada, 1998, pp. 1–6.
    [13] P.C. Simpson, D. Roach, A.T. Woolley, T. Thorsen, R. Johnston, G.F. Sensabaugh, R.A. Mathies, “High-throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates”, Proc. Natl. Acad. Sci. U.S.A. 95 (1998) 2256–2261.
    [14] T.A. Mcmahon, and J.T. Bonner, On Size and Life,Scuentific American Books, New York(1983)
    [15] Lippman G, Relation Entre Les Phenomens electriues et capillaries. Ann. Chim. Phys, 187; 5: 494-59
    [16] Michael G. Pollacka) and Richard B. Fairb),” Electrowetting-based actuation of liquid droplets for microfluidic applications” , APPLIED PHYSICS LETTERS VOLUME 77, NUMBER 11.
    [17] Neil Fortner and Benjamin Shapiro, “Equilibrium and Dynamic Behavior of Micro Flows Under Electrically Induced Surface Tension Actuation Forces “ , Aerospace Engineering, University of Maryland
    [18] H. J. J. Verheijen, “Reversible Electrowetting and Trapping of Charge: Model and Experiments,” Langmuir 1999, 15, 6616.
    [19] Sung Kwon Cho, Hyejin Moon, and Chang-Jin Kim, “Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits,” Journal of Microelectromechanical Systems, Vol. 12, NO.1. Feb 2003.
    [20] Sung Kwon Cho and Chang-Jin Kim, “Particle Separation and Concentration Control for Digital Microfluidic Systems,” The 16th Annual IEEE International Conference on MEMS (MEMS 2003), Kyoto, Japan, Jan 2003, pp. 686–689.
    [21] Vijay Srinivasan, Vamsee K.Pamula, and Richard B. Fair, “Droplet-based Microfluidic Lab-on-a-chip for Glucose Detection,” Analytica Chimica Acta , vol. 507, no.1, pp.145-150, 2004.
    [22] H. Ren, R.B. Fair, M.G. Pollack, “ Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering,” Sensors and Actuators B 98 (2004) 319–327.
    [23] Debalina Chatterjee, Boonta Hetayothin, Aaron R. Wheeler, Daniel J. King and Robin L. Garrell, “Droplet-based microfluidics with nonaqueous solvents and solutions,” The Royal Society of Chemistry 2006 Lab Chip, 2006, 6, 199–206.
    [24] H.J.J. Verheijen and M.W.J. Prins, “ Reversible electrowetting and trapping of charge: model and experiments”, Langmuir 1999, 15, 6616-6620.
    [25] Jan Lippman, Andreas Greiner, and Jan G. Korvink , “ Modeling, Simulation and Optimization of Electrowetting “ .
    [26] Sung Kwon Cho, Hyejin Moon, Jesse Fowler, and Chang-Jin "CJ" Kim , “SPLITTING A LIQUID DROPLET FOR ELECTRO -WETTING -BASED MICROFLUIDICS “ , Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition November 11-16, 2001, New York, NY.

    下載圖示 校內:2009-07-04公開
    校外:2009-07-04公開
    QR CODE