| 研究生: |
徐舒彤 Hsu, Shu-Tung |
|---|---|
| 論文名稱: |
四角星形超材料之負線性模量性質探討 Quadrangular star cellular structures with negative linear compressibility |
| 指導教授: |
陳東陽
Chen, Tung-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 線性模量 、壓縮模量 、酒架機制 、拉密材料 、拉脹材料 |
| 外文關鍵詞: | linear compressibility, negative compressibility, wine-rack mechanism, stretch-densified materials |
| 相關次數: | 點閱:99 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在固體力學的理論中,絕大多數的材料於外部承受均勻壓力時,會在所有方向上發生收縮,然而有一些材料被發現會在壓力下沿一個或兩個方向膨脹,我們稱此材料在該方向上具有負線性模量。在自然界中,絕大部分的材料其線性模量都為正值,只有極少數量的材料具有負的線性模量,而這種特殊的材料性質在工程應用上具有相當之發展潛力,因此我們希望能夠藉由微結構設計的技術製造出具有負線性模量特性之人工材料,即四角星形超材料。經由彈性模數的計算,我們發現此超材料不僅僅具有負線性模量,還同時展現了負柏松比的特性,而且此四角星形超材料具有優越的可調性,可以藉由桿長比和角度的調整將系統的負線性模量和負面積壓縮模量最大化。除此之外,我們藉由計算結果去探究不同方向上負壓縮模量的發生時機,並且對柏松比與線性模量之間的關係進行探討。除了理論上的推導,本文於最後利用3D列印機來印製本文模型做為實驗試體,透過材料試驗機進行實驗,並藉由應力應變關係圖計算其楊氏模數,希望藉此更貼近真實的應用,並歸納出現實與理想之間的差異,提供具有負線性模量材料的一些初步設計概念與實際應用上的建議。
In the last few decades we have seen significant advancements in the field of mechanical metamaterials. In contrast to other mechanical properties, there are relatively few studies on the design and fabrication of material systems with negative compressibility. In this thesis, we present a new type of mechanical metamaterial referred to as “quadrangular star cellular structures”. In an attempt to derive the mechanical properties and compressibility of this cellular structure, based on the idealized wine-rack mechanism model, we show that the structure exhibits negative Poisson's ratios, as well as negative linear and area compressibility. Furthermore, we demonstrate the tunability of the microstructure and the occurrence of negative linear compressibility. Lastly, we obtain the Young's modulus of this material through experimental tests, which facilitates a discussion on the disparities between experimental results and theoretical derivations.
Aliev, A. E., Oh, J., Kozlov, M. E., Kuznetsov, A. A., Fang, S., Fonseca, A. F., Ovalle, R., Lima, M. D., Haque, M. H., Gartstein, Y. N., Zhang, M., Zakhidov, A. A. and Baughman, R. H. Giant-stroke, superelastic carbon hanotube aerogel muscles. Science, 323, 1575-1578. (2009).
Ashby, M. F. and Gibson, L. J. Cellular solids: Structure and properties. Press Syndicate of the University of Cambridge, Cambridge, UK, 175-231. (1997).
Barnes, D. L., Miller, W., Evans, K. E. and Marmier, A. Modelling negative linear compressibility in tetragonal beam structures. Mechanics of Materials, 46, 123-128. (2012).
Baughman, R. H., Stafström, S., Cui, C. and Dantas, S. O. Materials with negative compressibilities in one or more dimensions. Science, 279, 1522-1524. (1998).
Bridgman, P. W. The Compressibility of Metals at High Pressures. Proceedings of the National Academy of Sciences, 8, 361-365. (1922).
Cairns, A. B., Catafesta, J., Levelut, C., Rouquette, J., van der Lee, A., Peters, L., Thompson, A. L., Dmitriev, V., Haines, J. and Goodwin, A. L. Giant negative linear compressibility in zinc dicyanoaurate. Nature Materials, 12, 212-216. (2013).
Coulais, C., Teomy, E., Reus, K., Shokef, Y. and Hecke, M. Combinatorial design of textured mechanical metamaterials. Nature, 535, 529-532. (2016).
Dudek, K. K., Attard, D., Caruana-Gauci, R., Wojciechowski, K. W. and Grima, J. N. Unimode metamaterials exhibiting negative linear compressibility and negative thermal expansion. Smart Materials and Structures, 25, 025009. (2016).
Evans, K. E., Nkansah, M. A. and Hutchinson, I. J. Auxetic foams: Modelling negative Poisson's ratios. Acta Metallurgica et Materialia, 42, 1289-1294. (1994).
Gatt, R. and Grima, J. N. Negative compressibility. Physica Status Solidi(RRL) – Rapid Research Letters, 2(5), 236-238. (2008).
Ghaedizadeh, A., Shen, J., Ren, X. and Xie, Y. M. Designing composites with negative linear compressibility. Materials & Design, 131, 343-357. (2017).
Goodwin, A. L., Keen, D. A. and Tucker, M. G. Large negative linear compressibility of Ag3[Co(CN)6]. Proceedings of the National Academy of Sciences, 105, 18708-18713. (2008).
Greaves, G. N., Greer, A. L., Lakes, R. S. and Rouxel, T. Erratum: Poisson's ratio and modern materials. Nature Materials, 10, 986-986. (2011).
Grima, J. N., Alderson, A. and Evans, K. An Alternative Explanation for the Negative Poisson's Ratios in Auxetic Foams. Journal of The Physical Society of Japan, 74, 1341-1342. (2005).
Grima, J., Attard, D., Caruana-Gauci, R. and Gatt, R. Negative linear compressibility of hexagonal honeycombs and related systems. Scripta Materialia, 65, 565-568. (2011).
Grima, J., Caruana-Gauci, R., Attard, D. and Gatt, R. Three-dimensional cellular structures with negative Poisson's ratio and negative compressibility properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468, 3121-3138. (2012).
Grima, J. N., Alderson, A. and Evans, K. E. Auxetic behaviour from rotating rigid units. Physica Status Solidi(b), 242, 561-575. (2005).
Hill, R. Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11, 357-372. (1963).
Kadic, M., Bückmann, T., Stenger, N., Thiel, M. and Wegener, M. On the practicability of pentamode mechanical metamaterials. Applied Physics Letters, 100, 191901. (2012).
Lakes, R. Foam structures with a negative Poisson's ratio. Science, 235, 1038-1040. (1987).
Mariathasan, J., Finger, L. and Hazen, R. High-pressure behavior of LaNbO4. Acta Crystallographica Section B: Structural Science, 41, 179-184. (1985).
Masters, I. G. and Evans, K. E. Models for the elastic deformation of honeycombs. Composite Structures, 35, 403-422. (1996).
Miller, W., Evans, K. and Marmier, A. Negative linear compressibility in common materials. Applied Physics Letters, 106, 231903. (2015).
Milton, G.Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. Journal of the Mechanics and Physics of Solids, 61, 1543-1560. (2012).
Milton, G. W. and Cherkaev, A. V. Which Elasticity Tensors are Realizable? Journal of Engineering Materials and Technology, 117, 483-493. (1995).
Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford university press. (1985).
Overvelde, J., Shan, S. and Bertoldi, K. Compaction through buckling in 2D periodic, soft and porous structures: effect of pore shape. Advanced Materials (Deerfield Beach, Fla.), 24, 2337-2342. (2012).
Schittny, R., Bückmann, T., Kadic, M. and Wegener, M. Elastic measurements on macroscopic three-dimensional pentamode metamaterials. Applied Physics Letters, 103, 231905. (2013).
Shim, J., Perdigou, C., Chen, E. R., Bertoldi, K. and Reis, P. M. Buckling-induced encapsulation of structured elastic shells under pressure. Proceedings of the National Academy of Sciences, 109, 5978-5983. (2012).
Spinks, G. M., Wallace, G. G., Fifield, L. S., Dalton, L. R., Mazzoldi, A., De Rossi, D., Khayrullin, I. I., Baughman, R. H. Pneumatic carbon nanotube actuators. Advanced Materials, 14, 1728-1732. (2002).
Ungureanu, B., Achaoui, Y., Enoch, S., Brûlé, S. and Guenneau, S. Auxetic-like metamaterials as novel earthquake protections. EPJ Applied Metamaterials, 2. (2015).
Weng, C. N., Wang, K. T. and Chen, T. Design of microstructures and structures with negative linear compressibility in certain directions. Advanced Materials Research, 33-37, 807-814. (2008).
Xie, Y. M., Yang, X., Shen, J., Yan, X., Ghaedizadeh, A., Rong, J., Huang, X. and Zhou, S. Designing orthotropic materials for negative or zero compressibility. International Journal of Solids and Structures, 51, 4038-4051. (2014).
Zhou, X., Zhang, L., Zhang, H., Liu, Q. and Ren, T. 3D cellular models with negative compressibility through the wine-rack-type mechanism. Physica Status Solidi(b), 253, 1977-1993. (2016).
王國泰,線性模量與微觀結構的初步研究,成功大學土木工程學系碩士論文 (1999)。