簡易檢索 / 詳目顯示

研究生: 吳尚樺
Wu, Shang-Hua
論文名稱: 摺紙動態參數化研究
Parametric Modeling Algorithms Based on the Kinematics of Origami
指導教授: 簡聖芬
Chien, Sheng-Fen
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 50
中文關鍵詞: 動態摺紙折疊運動學參數式設計
外文關鍵詞: Parametric Design, Origami, Kinematics
相關次數: 點閱:94下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人性化與永續化的思維,讓建築的互動性與適應性日益受到重視。如何利用現今的科技技術進行動態建築設計是一個值得討論的議題。參數式設計方法的天賦在於其可以在既有的演算邏輯架構下,經由調整參數數值,就可以形成連續變動的外觀造型、量體或動態。相對於模擬靜態外形設計的演算法已經被大量的討論與研究,動態行為的參數化尚未被仔細的討論。

    本研究運用「摺紙」來討論動態行為,針對可展開縮放的摺紙圖紋理,進行剛性折疊模擬。經文獻回顧整理出六類的摺紙圖紋理,平行線紋理、放射線紋理、單摺紋理、V形紋理、X形紋理、雜形紋理。以此六種摺紙圖紋理進行動態模擬實作。運用「旋轉」解讀摺紙動態為概念,建立參數式的摺紙動態模擬邏輯。會因定義方式的不同而產生差異:以面的旋轉、點的軸轉及線的折疊三種旋轉概念實作摺紙動態,將六種摺紙圖紋理依序發展成六種摺紙動態模式:山型模式、傘型模式、單摺模式、V形折疊模式、X形折疊模式、自組單元模式。再使用AutoDesk Dynamo為操作工具與動態模擬平台,針對六種摺紙動態模式進行實作。將概念模型與定義方式實際運用,建立參數式設計的演算法。討論摺紙動態模式的功能、邏輯概念、演算法與後續應用後,檢討適合的操作流程與策略。

    本研究透過摺紙動態行為的定義,發展出一套可以進行多種摺紙動態行為模擬系統。儘管研究初步只應用在六種摺紙動態模式中,但透過此六種模式的實作,顯示本研究提出的摺紙動態行為模擬系統具備相當發展的潛力,提供未來動態設計探索與應用的潛能。

    Parametric design has been adopted by designers to create kinetic architecture. Implementing the kinematics of origami in a parametric design system is desirable and has been studied, but the results are still limited.

    We have identified six common patterns of rigid origami folding. They are Linear, Radial, Tuck, V-span, X-span, and Unit. Based on the patterns, a set of parametric design tools has been developed and implemented.

    A conceptual model, Move Model, is proposed to address the kinematics of rigid origami. It is demonstrated through the implementation that the concept of rotation alone is sufficient to model various patterns of origami. Furthermore, we have developed Active Origami as a set of parametric tools to explore patterns of rigid origami.

    摘要 I 誌謝 VIII 目錄 IX 表目錄 X 圖目錄 X 1. 緒論 1 1.1 研究背景 1 1.2 研究課題 1 1.3 研究目標 2 1.4 研究方法 4 1.5 詞彙定義 5 1.6 論文架構 5 2. 摺紙與設計 6 2.1 摺紙設計 6 2.2 摺紙設計應用 10 2.3 電腦輔助摺紙設計 16 3. 摺紙紋理與動態邏輯 19 3.1 摺紙圖紋理 19 3.2 參數式設計工具 22 3.3 摺紙動態邏輯概念 23 4. 摺紙模擬 25 4.1 摺紙動態模式 25 4.2 模擬操作檢討 37 4.3 操作策略 40 5. 結論 42 5.1 研究貢獻 42 5.2 後續研究 43 參考文獻 45 附錄1研究紀錄 A-1 附錄2摺紙動態模式程式圖 A-21

    Abel, Z., Cantarella, J., Demaine, E. D., Eppstein, D., Hull, T., Ku, J. S., Lang, R. J., & Tachi, T. (2015). Rigid origami vertices: Conditions and forcing sets. arXiv preprint arXiv:1507.01644.
    Aedas. (2012). Al Bahar Towers Responsive Facade. Retrieved January 31, 2018, from https://www.archdaily.com/270592/al-bahar-towers-responsive-facade-aedas
    Aish, R. (2003). Extensible computational design tools for exploratory architecture Architecture in the Digital Age: Design and Manufacturing (pp. 338-347). New York: Spon Press.
    Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A Pattern Language: Towns, Buildings, Construction. New York: Oxford University Press.
    Alperin, R. C. (2000). A mathematical theory of origami constructions and numbers. New York Journal of Mathematics, 6, 119-133.
    Bateman, A. (2001, March 9-11). Computer tools and algorithms for origami tessellation design. Paper presented at the Origami 3: Proceedings of the 3rd International Meeting of Origami Mathematics, Science, and Education, Asilomar, California, USA.
    Bern, M., & Hayes, B. (1996, January 28-30). The complexity of flat origami. Paper presented at the the seventh annual ACM-SIAM symposium on Discrete algorithms, Atlanta, Georgia, USA.
    Bhooshan, S. (2016). Interactive Design of Curved‐Crease‐Folding. (MPhil Thesis), University of Bath, UK.
    Bowen, L. A., Grames, C. L., Magleby, S. P., Howell, L. L., & Lang, R. J. (2013). A Classification of Action Origami as Systems of Spherical Mechanisms. Journal of Mechanical Design, 135(11), 111008-111008-111007. doi:10.1115/1.4025379
    Burry, M. (2003). Between intuition and process: parametric design and rapid protyping Architecture in the Digital Age: Design and Manufacturing (pp. 148-162). New York: Spon Press.
    Burry, M. (2011). Scripting Cultures: Architectural Design and Programming. Chichester, UK: Wiley.
    Chen, Y., Peng, R., & You, Z. (2015). Origami of thick panels. Science, 349(6246), 396-400.
    Cybulski, J. S., Clements, J., & Prakash, M. (2014). Foldscope: Origami-Based Paper Microscope. PloS one, 9(6), e98781. doi:10.1371/journal.pone.0098781
    De Focatiis, D., & Guest, S. (2002). Deployable membranes designed from folding tree leaves. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 360(1791), 227-238.
    Demaine, E. D., Demaine, M. L., Koschitz, D., & Tachi, T. (2011, September 20-23). Curved crease folding: a review on art, design and mathematics. Paper presented at the 35th Annual Symposium of International Association for Bridge and Structural Engineering, London, UK.
    Demaine, E. D., & O’Rourke, J. (2007). Geometric Folding Algorithms. Cambridge ; New York: Cambridge University Press
    Demaine, E. D., & Tachi, T. (2017, July 4-7). Origamizer: a practical algorithm for folding any polyhedron. Paper presented at the 33rd International Symposium on Computational Geometry, Brisbane, Australia.
    Elghazi, Y., Wagdy, A., Mohamed, S., & Hassan, A. (2014, September 22-24 ). Daylighting driven design: optimizing kaleidocycle facade for hot arid climate. Paper presented at the 5th German-Austrian IBPSA Conference, Aachen, Germany.
    Ernst Giselbrecht + Partner. (2010). Kiefer Technic Showroom. Retrieved January 31, 2018, from https://www.archdaily.com/89270/kiefer-technic-showroom-ernst-giselbrecht-partner
    Fishtnk Inc. (2012). Tunable Sound Cloud Retrieved January 31, 2018, from http://www.fishtnk.com/tunable-sound-cloud/
    Francis, K. C., Rupert, L. T., Lang, R. J., Morgan, D. C., Magleby, S. P., & Howell, L. L. (2014, August 17–20). From Crease Pattern to Product: Considerations to Engineering Origami-Adapted Designs. Paper presented at the 38th Mechanisms and Robotics Conference, Buffalo, New York, USA.
    Furuta, Y., Mitani, J., & Fukui, Y. (2009, May 28-30). A rendering method for 3D origami models using face overlapping relations. Paper presented at the Smart Graphics, Salamanca, Spain.
    Guest, S. D., & Pellegrino, S. (1992, September 7- 11 ). Inextensional wrapping of flat membranes. Paper presented at the the First International Seminar on Structural Morphology, Montpellier, France.
    Hanna, B. H., Lund, J. M., Lang, R. J., Magleby, S. P., & Howell, L. L. (2014). Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Materials and Structures, 23(9), 094009. doi:10.1088/0964-1726/23/9/094009
    Hatori, K. (2003). K’s origami: Origami construction. Retrieved February 10, 2018, from https://origami.ousaan.com/library/conste.html

    Helm, R., Johnson, R. E., Gamma, E., & Vlissides, J. (1995). Design Psatterns: Elements of Reusable Object-Oriented Software. Boston, Massachusetts, USA: Addison-Wesley Professional.
    Henning Larsen Architects. (2014). SDU Campus Kolding Retrieved January 31, 2018, from https://www.archdaily.com/590576/sdu-campus-kolding-henning-larsen-architects
    Hinders, D. (2017a). A Guide to Origami Wet Folding. Retrieved February 13, 2018, from https://www.thespruce.com/origami-wet-folding-2540940
    Hinders, D. (2017b). An Introduction to Kirigami Paper Cutting. Retrieved February 13, 2018, from https://www.thespruce.com/an-introduction-to-kirigami-paper-cutting-2540656
    Hoffmann, C. M., & Joan-Arinyo, R. (2005). A brief on constraint solving. Computer-Aided Design and Applications, 2(5), 655-663.
    Huang, Y., Gross, M. D., Do, E. Y.-L., & Eisenberg, M. (2009, February 16-18). Easigami: a reconfigurable folded-sheet TUI. Paper presented at the 3rd International Conference on Tangible and Embedded Interaction, Cambridge, UK.
    Hull, T. (2003). Counting mountain-valley assignments for flat folds. Ars Combinatoria, 67, 175-188.
    Hunt, G. W., & Ario, I. (2005). Twist buckling and the foldable cylinder: an exercise in origami. International Journal of Non-Linear Mechanics, 40(6), 833-843.
    Huzita, H. (1992). Understanding geometry through origami axioms. In J. Smith (Ed.), Proceedings of the First International Conference on Origami in Education and Therapy (pp. 37-70). Birmingham, UK: British Origami Society.
    Huzita, H., & Scimemi, B. (1989, December 6-7 ). The algebra of paper-folding. Paper presented at the First International Meeting of Origami Science and Technology, Ferrara, Italy.
    Jackson, P. (2011). Folding Techniques for Designers: from Sheet to Form. London, UK: Laurence King Publishing.
    Jovanović, M. (2014, June 20-22). Algorithmic approach to origami pattern application in architectural design. Paper presented at the 4th International Scientific Conference on Geometry and Graphics, Vlasina, Serbia.
    Khabazi, Z. (2012). Generative Algorithms with Grasshopper. Version 2.0. Retrieved February 12, 2018, from http://files.na.mcneel.com/misc/Generative%20Algorithms%20v2.zip
    Kolarevic, B. (2004). Architecture in the Digital Age: Design and Manufacturing. New York ; London: Spon Press.
    Kolarevic, B., & Parlac, V. (2015). Building Dynamics: Exploring Architecture of Change. London ; New York: Routledge.
    Lang, R. J. (1994). Mathematical algorithms for origami design. Symmetry: Culture and Science, 5(2), 115-152.
    Lang, R. J. (1996, May 24-26). A computational algorithm for origami design. Paper presented at the Proceedings of the twelfth annual symposium on Computational geometry, Philadelphia, Pennsylvania, USA.
    Lang, R. J. (1998). Treemaker 4.0: A program for origami design. http://www.langorigami.com/article/treemaker.
    Lang, R. J. (2003). Origami Design Secrets: Mathematical Methods for an Ancient Art. Natick, Massachusetts: A K Peters.
    Lang, R. J. (2009, July 26-29). Mathematical methods in origami design. Paper presented at the Bridges 2009: Mathematics, Music, Art, Architecture, Culture, Banff, Alberta, Canada.
    Lang, R. J. (2010). Origami and Geometric Constructions. Retrieved February 12, 2018, from http://langorigami.com/files/articles/origami_constructions.pdf
    Lang, R. J., & Furuti, C. (2007). ReferenceFinder (Version 4). http://www.langorigami.com/article/referencefinder.
    Lee, D.-Y., Kim, J.-S., Kim, S.-R., Koh, J.-S., & Cho, K.-J. (2013, August 4-7). The deformable wheel robot using magic-ball origami structure. Paper presented at the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, Oregon, USA.
    Mitani, J. (2009). A design method for 3D origami based on rotational sweep. Computer-Aided Design and Applications, 6(1), 69-79.
    Mitani, J. (2012). ORIPA: origami pattern editor. http://mitani.cs.tsukuba.ac.jp/oripa/.
    Miura, K. (1985). Method of packaging and deployment of large membranes in space (Departmental Bulletin PaperNo.0285-6808). Japan: Institute of Space and Astronautical Science.
    Miyashita, S., Meeker, L., Tolley, M. T., Wood, R. J., & Rus, D. (2014). Self-folding miniature elastic electric devices. Smart Materials and Structures, 23(9), 094005
    Nojima, T. (2002). Origami Modeling of Functional Structures Based on Organic Patterns. (Master Thesis), Graduate School of Kyoto University, Japan.
    O’Rourke, J. (2011). How to Fold it: the Mathematics of Linkages, Origami, and Polyhedra. Cambridge: Cambridge University Press.
    Onal, C. D., Wood, R. J., & Rus, D. (2011, May 9-13). Towards printable robotics: origami-inspired planar fabrication of three-dimensional mechanisms. Paper presented at the IEEE International Conference on Robotics and Automation, Shanghai, China.
    Osorio, F., Paio, A., & Oliveira, S. (2014, 14-16 May). KOS-Kinetic Origami Surface. Paper presented at the Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA), Kyoto, Japan.
    Pesenti, M., Masera, G., Fiorito, F., & Sauchelli, M. (2015). Kinetic solar skin: a responsive folding technique. Energy Procedia, 70, 661-672.
    Reichert, S., Menges, A., & Correa, D. (2015). Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Computer-Aided Design, 60, 50-69.
    Schaeffer, O., & Vogt, M.-M. (2010). Move: Architecture in Motion-dynamic Components and Elements. Basel, Switzerland: Birkhäuser.
    Scherer, A.-L. (2015). Programmable Folding: Computational Design with an Embedded Assembly Logic. (MSc Thesis), University of Stuttgart, Germany.
    Schumacher, P. (2009). Parametricism: A new global style for architecture and urban design. Architectural Design, 79(4), 14-23.
    Sorguç, A. G., Hagiwara, I., & Selcuk, S. (2009). Origamics in architecture: a medium of inquiry for design in architecture. METU Journal of the Faculty of Architecture, 26(2), 235-247.
    Tachi, T. (2009a, September 28 - October 2). Generalization of rigid foldable quadrilateral mesh origami. Paper presented at the Symposium of the International Association for Shell and Spatial Structures, Valencia, Spain.
    Tachi, T. (2009b). Simulation of rigid origami. Origami, 4, 175-187.
    Tachi, T. (2010). Freeform variations of origami. Journal for Geometry and Graphics, 14(2), 203-215.
    Tachi, T. (2011). Rigid-foldable thick origami. Origami, 5, 253-264.
    Tachi, T. (2013). Designing Freeform Origami Tessellations by Generalizing Resch's Patterns. Journal of Mechanical Design, 135(11), 111006-111006-111010. doi:10.1115/1.4025389
    Tama Software Ltd. (2017). Pepakura Designer. http://www.tamasoft.co.jp/pepakura-en/.
    Tedeschi, A. (2014). AAD Algorithms-aided Design: Parametric Strategies Using Grasshopper. Brienza, Italy: Le Penseur Publisher.
    Werner, C. D. M. (2013). Transformable and transportable architecture: analysis of buildings components and strategies for project design. (Master Thesis), Tecnología de la Arquitectura, Universitat Politècnica de Catalunya, Barcelona, España.
    Woodbury, R. (2010). Elements of Parametric Design. London: Routledge.
    Yasuda, H., Chen, Z., & Yang, J. (2016). Multitransformable Leaf-Out Origami With Bistable Behavior. Journal of Mechanisms and Robotics, 8(3), 031013-031013-031016. doi:10.1115/1.4031809
    Zirbel, S. A., Trease, B. P., Thomson, M. W., Lang, R. J., Magleby, S. P., & Howell, L. H. (2015, April 20-24). HanaFlex: a large solar array for space applications. Paper presented at the Micro-and Nanotechnology Sensors, Systems, and Applications VII, Baltimore, Maryland, USA.
    Zuk, W., & Clark, R. H. (1970). Kinetic Architecture. New York: Van Nostrand Reinhold.
    王祈雅. (2013). 參數化折疊表面之建築設計應用. (建築學系碩士論文), 淡江大學, 新北市.
    李盈瑩. (2013). 中國文人山水畫之意境觀念與空間模式. (建築設計學系碩士論文), 實踐大學, 台北市.
    阮明淑. (2008). 利用模式語言表達獨立紀錄片製作之隱性知識研究. 圖書資訊學刊, 6(1&2), 57-82.
    賴靖騏. (2011). 參數設計模式語言初探. (建築學系碩士論文), 國立成功大學, 台南市.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE