| 研究生: |
曾俊凱 Tseng, Jun-Kai |
|---|---|
| 論文名稱: |
鳳梨纖維土磚:在地餘料的升級回收與自造 -以屏東縣高樹鄉泰山村基地為例 Pineapple Fiber Earth Blocks: Upcycling Local Residues and Self Construction -A Case Study of Taishan Village, Gaoshu Township, Pingtung County |
| 指導教授: |
劉舜仁
Liou, Shuenn-Ren 郭文毅 Kuo, Wen-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 171 |
| 中文關鍵詞: | 在地循環材料 、新型態土磚 、農業餘料再利用 |
| 外文關鍵詞: | Local Circular Materials, New Compressed Earth Blocks, Agricultural Waste Reuse |
| 相關次數: | 點閱:151 下載:43 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
夯土技術作為歷史悠久的建築技法,具備抵抗潮濕和風化的優勢,成為臺灣早 期常見的建築紋理。隨著發展,多數建築材料逐漸轉向紅磚和混凝土。在環保意識 抬頭後,土壤材料再度受到重視。為提高其結構強度與耐久性,普遍需加入水泥, 然而水泥製造過程佔比約全球 7%的總碳排,卻對環境造成一定程度的負擔。
近年來,鳳梨纖維逐漸被引入紡織業,成為升級回收和再利用材料中的重要永續趨勢。屏東縣高樹鄉為臺灣鳳梨生產重鎭之一,本研究以此地為例,結合當地傳統土房的建築肌理,探討未來新型態在地永續材料的應用。
鳳梨收成後產生大量廢棄的鳳梨莖葉,成為本研究的重要材料來源。作者觀察 高樹鄉泰山村聚落中現存 8 處土磚房老建築,顯現出獨特的在地建築文化。本研究 以屏東當地老屋土壤材料及特色產業為基礎,結合劉舜仁教授團隊及樂土開發的鹼 激發材料技術,嘗試建立以工業餘料系統為基底的膠結材料並結合在地農業餘料, 進而替代傳統水泥,以應對水泥產業的永續挑戰。本研究意旨在建立環境友善的基 礎,探索適用於不同區域的建築材料,以材料循環再利用為核心理念,推動具在地 特色的永續系統。定義夯實土塊(Compressed Earth)的製造工法,並透過設計成 果泰山磚(Taishan Blocks)融入臨時性活動單元,創造兼具社區價値與多功能性 的場域,實現資源優化與永續共生。研究成果選定泰山村三處作為示範基地,分別 為土磚房合院、街屋、農舍等農村常見之建築類型。這些材料在使用後仍可回收再 生,實現環境友善的最佳化,呼應永續發展的願景,期望成為具地方代表性的建 材。
In recent years, pineapple fiber has emerged as a significant sustainable trend in upcycling and material reuse within the textile industry. Taishan Village in Gaoshu Township, Pingtung County, one of Taiwan's key pineapple-producing regions, serves as the case study for this research. Inspired by the architectural texture of the village's traditional rammed earth houses, this study explores the potential applications of new sustainable local materials. The author observed eight existing earth-brick houses in the Taishan settlement, which reflect the region's unique architectural culture.
This study is based on the local soil materials from old houses in Pingtung and the pineapple industry, utilizing alkali-activated material technology co-developed by Professor Shuenn-Ren Liou 's team and Lotos. It aims to establish a binder system using industrial waste as a base, combined with local agricultural by-products, as a sustainable alternative to traditional cement to address the environmental challenges faced by the cement industry.
The study aims to develop an environmentally friendly framework for construction materials adaptable to various regions, promoting sustainable development with a focus on local characteristics. Material recycling is the central concept, and the design outcomes, referred to as “Taishan Blocks,” are embedded into temporary activity spaces to create multifunctional environments that offer both community value and resource optimization. Three demonstration sites have been selected in Taishan Village, representing common rural architectural forms: earth-brick courtyard houses, shophouses, and farmhouses. The materials used remain recyclable after their application, achieving environmental optimization and aligning with sustainable development goals. This research aspires to position these materials as locally distinctive building components that embody both cultural heritage and future sustainability.
中文文獻
1.朱涵稘(2022),地方零件製造與空間自造-以澎湖砂砱為例。國立成功大學建築學系。
2.何治霖(2012),臺灣土埆建築牆體劣化之研究。國立成功大學建築學系碩博士班。
3.侯咖享(2022),以循環材料與可逆式工法建構空間中的時間性論述-以矽酸 鈣板與其循環材料為例。國立成功大學建築學系。
4.周柏琳(2002),臺灣傳統建築土埆構造力學性能初探。國立成功大學建築 學系碩博士班。
5.程盈嘉(2020),根源自然-從有機廢棄物到土地友善的建築系統。國立成功大學建築學系。
6.張杰元(2002),傳統水泥產業組織變革策略之研究-以欣欣水泥公司為例。南華大學管理研究所。
7.潘智傑(2019),高樹加蚋埔社會變遷史。⻑榮大學臺灣研究所。
8.潘守言(2022),類水泥材料積層製造系統之建構-應用於澎湖縣珊瑚復育。國立成功大學建築學系。
9.黃浩(2022),循環漿體塡充材與框架系統接合工法研究 - 以澎湖⺠族路、赤崁基地為例。國立成功大學建築學系。
10.劉希眞(2022),循環經濟模式下可回復式設計於數位孿生的探討-以中華紙漿花蓮廠磚體應用為例。國立成功大學建築學系。
11.蔡蕙奾(2022),牡蠣殼循環材料:現代三合土 - 以台南安平基地為例。國立成功大學建築學系。
英文文獻
12. Gutierrez Rivas, A., Chandler, A., Shilova, E., Ayati, B., Nichols, P., Ogundare, F. O., Ciftci, B., Patel, H. A., Taha, R., Ranasinghe, K., Ganji, M. S., Borda, A.-M., Gillespie, A., Dungrani, M. U., Klimenteva, A., Henley, S., Tsakiridis, G., Singer, P. (2022). Sugarcrete®. https://www.uel.ac.uk/sites/default/files/uel-sugarcrete- slab-report---november-2022.pdf
13. da Costa Gonçalves, L. F., Balestra, C. E. T., & Ramirez Gil, M. A. (2023). Evaluation of mechanical, physical and chemical properties of ecological modular soil-alkali activated bricks without Portland cement. Environmental Development, 48, 100932. https://doi.org/https://doi.org/10.1016/j.envdev.2023.100932
14. Daudon, D., Sieffert, Y., Albarracín, O., Libardi, L., & Navarta Navarro, G. (2014). Adobe Construction Modeling by Discrete Element Method: First Methodological Steps. Procedia Economics and Finance, 18. https://doi.org/10.1016/S2212-5671(14)00937-X
15. El Nabouch, R. (2017). Mechanical behavior of rammed earth walls under Pushover tests Université Grenoble Alpes].
16. Gavali, H. R., Bras, A., Faria, P., & Ralegaonkar, R. V. (2019). Development of sustainable alkali-activated bricks using industrial wastes. Construction and Building Materials, 215, 180-191. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.04.152
17. Jannat, N., Hussien, A., Abdullah, B., & Cotgrave, A. (2020). Application of agro and non-agro waste materials for unfired earth blocks construction: A review. Construction and Building Materials, 254, 119346. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.119346
18. Karolina, R., Tandika, W., Hasibuan, A., Putra, M. A., & Fahreza, D. (2022). Pineapple leaf fiber (PALF) waste as an alternative fiber in making concrete. Journal of Physics: Conference Series,
19. Laborel-Préneron, A., Aubert, J. E., Magniont, C., Tribout, C., & Bertron, A. (2016). Plant aggregates and fibers in earth construction materials: A review. Construction and Building Materials, 111, 719-734. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.02.119
20. Losini, A. E., Grillet, A. C., Bellotto, M., Woloszyn, M., & Dotelli, G. (2021). Natural additives and biopolymers for raw earth construction stabilization – a review. Construction and Building Materials, 304, 124507. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.124507
21. Morel, J. C., Mesbah, A., Oggero, M., & Walker, P. (2001). Building houses with local materials: means to drastically reduce the environmental impact of construction. Building and environment, 36(10), 1119-1126. https://doi.org/https://doi.org/10.1016/S0360-1323(00)00054-8
22. Mostafa, M., & Uddin, N. (2016). Experimental analysis of Compressed Earth Block (CEB) with banana fibers resisting flexural and compression forces. Case Studies in Construction Materials, 5, 53-63.
23. Murmu, A. L., & Patel, A. (2018). Towards sustainable bricks production: An overview [Review]. Construction and Building Materials, 165, 112-125. https://doi.org/10.1016/j.conbuildmat.2018.01.038
24. Namango, S. (2006). Development of cost-effective earthen building material for housing wall construction BTU Cottbus-Senftenberg].
25. Nitelik Gelirli, D., & Arpacıoğlu, Ü. (2020). Development of the Usage Possibilities of Adobe with Computational Design.
26. Okoronkwo, C. D. (2015). Developing sustainable and environmentally friendly building materials in rammed earth construction.
27. Paul, S., Islam, M. S., & Elahi, T. E. (2022). Comparative effectiveness of fibers in enhancing engineering properties of Earth as a building Material: A review. Construction and Building Materials, 332, 127366. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.127366
28. Rabie, O. (2012). Revealing the Potential of Compressed Earth Blocks
29. A Study in the Materiality of Compressed Earth Blocks (CEB): Lightness,Tactility, and Formability.
30. Ramakrishnan, S., Loganayagan, S., Kowshika, G., Ramprakash, C., & Aruneshwaran, M. (2021). Adobe blocks reinforced with natural fibres: A review. Materials Today: Proceedings, 45, 6493-6499. https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.377
31. Taallah, B., Guettala, A., Guettala, S., & Kriker, A. (2014). Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers [Article]. Construction and Building Materials, 59, 161-168. https://doi.org/10.1016/j.conbuildmat.2014.02.058
32. Thompson, D., Augarde, C., & Osorio, J. P. (2022). A review of current construction guidelines to inform the design of rammed earth houses in seismically active zones. Journal of Building Engineering, 54, 104666. https://doi.org/https://doi.org/10.1016/j.jobe.2022.104666
33. Turco, C., Paula Junior, A. C., Teixeira, E. R., & Mateus, R. (2021). Optimisation of Compressed Earth Blocks (CEBs) using natural origin materials: A systematic literature review. Construction and Building Materials, 309, 125140. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.125140
34. Vodounon, N. A., Kanali, C., & Mwero, J. (2018). Compressive and flexural strengths of cement stabilized earth bricks reinforced with treated and untreated pineapple leaves fibres. Open Journal of Composite Materials, 8(4), 145-160.
期刊
35. 石燕鳳(2020),〈天然可再生補強材─植物纖維素〉,專題報導,572 期
36. 吳武易(2023)。可分享的街屋與循環可逆的建築,建築師雜誌 6 月份。 582 期,98-103。
37. 劉舜仁(2018),循環經濟架構下的建築設計,臺灣建築學會會刊雜誌。91 期,50-59。
網路資料
38. 社企流(2017),農業廢棄物升級回收成環保建材,打造全球第一棟「生物屋」,取自: https://www.seinsights.asia/article/5239
39. 循環臺灣基金會,〈循環產業建築/居住〉,取自:https://circular-taiwan.org
40. 藝術兵營(2009),土埆與土屋,取自: http://nestdream2008.blogspot.com/2009/05/qa.html
41. 臺灣數位農村博物館(2018-2022),用數字認識臺灣農村,取自: https://rural.openmuseum.tw