簡易檢索 / 詳目顯示

研究生: 賴俐岑
Lai, Li-Tsen
論文名稱: 一維氧化銅奈米線感測器之研究
Investigation of One-Dimensional Copper Oxide Nanowire Sensors
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2026
畢業學年度: 114
語文別: 英文
論文頁數: 211
中文關鍵詞: 氧化銅奈米線臭氧感測濕度感測金奈米顆粒穿矽通孔金屬氧化物半導體
外文關鍵詞: copper oxide nanowires, ozone sensing, humidity sensing, gold nanoparticles, through-silicon via, metal-oxide semiconductors
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以一維氧化銅奈米線為核心感測材料平台,發展兼具低濃度偵測能力與元件整合可行性之電阻型環境感測器,研究主題涵蓋低濃度臭氧氣體感測與相對濕度感測兩大方向。第一研究主軸採用熱氧化法於圖形化叉指電極上成長氧化銅奈米線,並系統性探討銅薄膜厚度對奈米線形貌特徵與感測性能之影響。由結構鑑定與形貌觀察結果可確認樣品形成單斜晶系之氧化銅相,且具備良好結晶性與奈米線成長一致性。氣體感測結果顯示,該感測元件於臭氧濃度範圍 50–300 ppb之間具有線性響應關係,並可在低操作溫度 100 ℃條件下偵測 50 ppb 之臭氧,且響應值可達 40%,同時展現良好之重複性與穩定性。
    第二研究主軸導入穿矽通孔整合基板,建立金奈米顆粒修飾之氧化銅奈米線濕度感測元件。結果證實穿矽通孔結構具有良好之銅填孔完整性,可提供穩定之導通路徑與電性接觸基礎;此外,金奈米顆粒修飾可有效提升濕度感測之靈敏度與動態穩定性,其增益效應主要歸因於金屬與半導體界面所造成之電荷轉移與能帶調變作用,並結合奈米尺度金顆粒所提供之活性吸附位點,使相對濕度變化下之載子調變幅度得以放大。
    綜合而言,本論文建立穿矽通孔整合與表面工程策略下之一維氧化銅奈米線感測架構,展現其於微型化環境監測與智慧感測系統之應用潛力。

    This dissertation develops resistive-type environmental sensors based on one-dimensional copper oxide (CuO) nanowires (NWs), aiming to achieve both low-concentration detection capability and device-integration feasibility. The research is organized into two main thrusts: low-concentration ozone (O₃) gas sensing and relative humidity (RH) sensing.
    In the first research thrust, CuO NWs were grown on patterned interdigital electrodes (PIEs) via a thermal oxidation method. The effects of Cu thin-film thickness on nanowire morphology and sensing performance were systematically investigated. Structural and morphological characterizations, including X-ray diffraction (XRD) and scanning electron microscopy (SEM), confirmed the formation of monoclinic CuO with good crystallinity and uniform nanowire growth. Gas-sensing results demonstrated a linear response over an O₃ concentration range of 50 – 300 ppb. Notably, the sensor was capable of detecting 50 ppb O₃ at a low operating temperature of 100 °C, achieving a response of 40% with good repeatability and stability.
    In the second research thrust, through-silicon via (TSV)-integrated substrates were introduced to establish Au nanoparticle-decorated CuO NW (Au NP/CuO NW) humidity sensors. The fabrication results verified high-quality Cu-filled TSV structures, providing reliable electrical pathways and improved backside contact feasibility. Furthermore, Au NP decoration effectively enhanced humidity sensitivity and dynamic stability. The performance improvement is attributed to charge transfer and band modulation at the Au/CuO metal–semiconductor interface, as well as the increased density of active adsorption sites introduced by nanoscale Au NPs, which amplifies carrier modulation under varying RH environments.
    Overall, this dissertation establishes a TSV-integrated and surface-engineered CuO NW sensing platform, demonstrating strong potential for miniaturized environmental monitoring and future intelligent sensing applications.

    摘要 I Abstract II Acknowledgements IV Figure Captions XII Table Captions XVI Chapter 1. Introduction - 1 - 1-1. Research Background and Motivation- 1 - 1-2 Research Objectives - 6 - 1-3 Significance and Originality- 8 - 1-4 Major Contributions - 9 - 1-5 Dissertation Organization - 10 - Chapter 2. Literature Review - 11 - 2-1. Research Trends in Ozone Pollution and the Demand for Low-Concentration Monitoring - 11 - 2-2. Fundamental Mechanisms and Performance-Limiting Factors in MOS Gas Sensing - 13 - 2-3. Development of O₃ Sensing Materials: n-Type versus p-Type MOS Research Landscape - 14 - 2-4. Advantages and Research Trends of One-Dimensional Nanowires in Gas Sensing - 16 - 2-5. Research Progress of CuO Nanowires and the Gap in Low-Concentration O₃ Detection - 17 - 2-6 Au Nanoparticle Functionalization and Humidity Sensing: From Material Enhancement to System Reliability - 18 - 2-7 Feasibility and Extended Value of TSV 3D Integration for Environmental Sensing Platforms - 20 - 2-8 Literature Comparison and Research Positioning - 21 - 2-9 Chapter Summary - 24 - Chapter 3. Materials, Fabrication, and Experimental Methods - 25 - 3-1 Overview of Research Framework - 28 - 3-2 Wafer Preparation and RCA Cleaning . - 30 - 3-2-1 SPM (Caro’s Acid) for Organic Contaminant Removal- 32 - 3-2-2 DHF Treatment for Native Oxide Removal - 33 - 3-2-3 APM (SC-1) for Particle and Residual Organic Removal- 33 - 3-2-4 HPM (SC-2) for Metallic Ion Removal - 34 - 3-2-5 Process Consistency and Operational Constraints - 34 - 3-2 Summary - 35 - 3-3 Device Fabrication Processes - 36 - 3-3-1 First Research Thrust: Fabrication of CuO NWs on PIEs via Thermal Oxidation - 37 - 3-3-2 Second Research Thrust: TSV Substrate Fabrication - 44 - 3-3-3 Au Thin-Film Deposition and Dewetting Annealing - 49 - 3-4 Material Characterization Techniques - 51 - 3-4-1 XRD Measurement Conditions and Phase Identification - 53 - 3-4-2 SEM/EDS Characterization - 55 - 3-4-3 Au NP Size Determination - 57 - 3-4 Summary - 59 - 3-5 Gas Sensing Measurement Setup and Protocol- 59 - 3-5-1 Chamber Configuration and Placement of the Heating Stage - 61 - 3-5-2 Electrical Measurement Method: Two-Probe Contact and Hook Clip Signal Connection - 62 - 3-5-3 O₃ Concentration Monitoring and Rationale for the Selected Concentration Range (50–300 ppb) - 63 - 3-5-4 Measurement Procedure (Gas on / Gas off) - 64 - 3-6 Humidity Sensing Measurement Setup and Protocol - 66 - 3-6-1 Humidity Measurement System and Environmental Control - 66 - 3-6-2 Electrical Measurement Method and Bias Conditions - 68 - 3-6-3 Stepwise RH Testing Procedure and Measurement Protocol - 69 - 3-6-4 Reference RH Condition and Data Sampling Principle (RH = 40%) - 70 - 3-6 Summary - 70 - 3-7 Definitions of Sensing Response and Data Analysis - 71 - 3-7-1 Baseline Current Definition and Sampling Principle - 72 - 3-7-2 Gas Sensing Response Definition (Part I) - 72 - 3-7-3 Humidity Sensing Response Definition (Part II, Referenced to RH = 40%) - 73 - 3-7-4 Response Time and Recovery Time Definitions (tᵣ and tᵣₑc) ..... - 75 - 3-7-5 Concentration/RH Dependence, Repeatability, and Stability Analysis - 76 - 3-7 Summary - 76 - Chapter 4 Results and Discussion I: Low-Concentration O₃ Sensing Performance of Thermally Oxidized CuO Nanowires - 78 - 4-1 Structural Analysis by XRD (Phase Identification and Crystallite-Size Estimation) - 80 - 4-2 Morphology of Thermally Oxidized CuO NWs (SEM and EDS Analysis) - 85 - 4-3 O₃ Sensing Performance at Low Concentrations - 91 - 4-3-1 Effect of CuO NW Length on O₃ Sensing Performance - 92 - 4-3-2 Operating Temperature Dependence - 97 - 4-3-3 Repeatability and Short-Term Stability - 101 - 4-3-4 Concentration Dependence and Linearity - 103 - 4-3-5 Influence of Relative Humidity on O₃ Sensing (Auxiliary Evaluation at RT) - 105 - 4-3-6 Gas Selectivity - 107 - 4-3-7 Summary of O₃ Sensing Performance - 109 - 4-4 O₃ Sensing Mechanism of p-Type CuO NWs - 110 - 4-4-1 Baseline Conduction and Oxygen Adsorption - 111 - 4-4-2 O₃ Interaction and Hole Accumulation Enhancement in p-Type Response - 113 - 4-4-3 Temperature and Humidity Modulation - 115 - 4-4 Integrated Summary - 117 - 4-5 Summary of the First Research Thrust (Part I) - 118 - Chapter 5 Results and Discussion II: TSV-Integrated Au-Decorated CuO Nanowire Humidity Sensors - 125 - 5-1 TSV Fabrication and Cu Filling Results - 128 - 5-2 Structural Analysis by XRD (Phase Identification and Crystallite Size Estimation) - 133 - 5-3 Formation and Size Analysis of Au Nanoparticles - 137 - 5-4 Humidity Sensing Characteristics - 142 - 5-4-1 Electrical Characteristics and RH-Dependent Response of Pristine CuO NWs - 143 - 5-4-2 Electrical Characteristics and RH-Dependent Response of Au NP/CuO NWs - 147 - 5-4-3 RH Response and Sensitivity Enhancement by Au NP Decoration .. - 151 - 5-4-4 Dynamic Response, Hysteresis, and Stability - 155 - 5-5 Humidity Sensing Mechanism and Enhancement Effects - 159 - 5-5 Mechanism Summary - 167 - 5-6 Summary of the Second Research Thrust (Part II) - 168 - Chapter 6. Conclusions and Future Work .................................................- 169 - 6-1 Overall Conclusions - 169 - 6-2 Conclusions of the First Research Thrust (Part I): Low-Concentration O₃ Gas Sensing - 170 - 6-3 Conclusions of the Second Research Thrust (Part II): TSV-Integrated Au/CuO NW Humidity Sensors - 172 - 6-4 System-Level Integration and Application Outlook - 173 - 6-5 Future Work - 175 - References - 178 - Publications - 187 - Appendices - 188 -

    [1.] N. Barsan and U. Weimar, “Conduction model of metal oxide gas sensors,” J. Electroceram., vol. 7, pp. 143–167, 2001, doi: 10.1023/A:1014405811371.
    [2.] N. Yamazoe and K. Shimanoe, “Theory of power laws for semiconductor gas sensors,” Sens. Actuators B: Chem., vol. 128, no. 2, pp. 566–573, 2008, doi: 10.1016/j.snb.2007.07.036.
    [3.] N. Barsan, D. Koziej, and U. Weimar, “Metal oxide-based gas sensor research: How to?” Sens. Actuators B: Chem., vol. 121, no. 1, pp. 18–35, 2007, doi: 10.1016/j.snb.2006.09.047.
    [4.] C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, “Metal oxide gas sensors: Sensitivity and influencing factors,” Sensors, vol. 10, no. 3, pp. 2088–2106, 2010, doi: 10.3390/s100302088.
    [5.] R. M. Harrison, Understanding Our Environment: An Introduction to Environmental Chemistry and Pollution. Cambridge, U.K.: Royal Society of Chemistry, 1999, doi: N/A.
    [6.] J. J. Zhang, Y. Wei, and Z. Fang, “Ozone pollution: a major health hazard worldwide,” Front. Immunol., vol. 10, p. 2518, 2019, doi: 10.3389/fimmu.2019.02518.
    [7.] World Health Organization, Air Quality Guidelines: Global Update 2005—Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide. Copenhagen, Denmark: WHO Regional Office for Europe, 2006, doi: N/A.
    [8.] N. Barsan and U. Weimar, “Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO₂ sensors in the presence of humidity,” J. Phys.: Condens. Matter, vol. 15, no. 20, pp. R813–R839, 2003, doi: 10.1088/0953-8984/15/20/201.
    [9.] N. Yamazoe, “Toward innovations of gas sensor technology,” Sens. Actuators B: Chem., vol. 108, nos. 1–2, pp. 2–14, 2005, doi: 10.1016/j.snb.2004.12.075.
    [10.] N. Yamazoe, “Receptor function and response of semiconductor gas sensor,” J. Sens., vol. 2009, Art. no. 875704, 2009, doi: 10.1155/2009/875704.
    [11.] A. Kolmakov and M. Moskovits, “Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures,” Annu. Rev. Mater. Res., vol. 34, pp. 151–180, 2004, doi: 10.1146/annurev.matsci.34.040203.112141.
    [12.] N. S. Ramgir, Y. Yang, and M. Zacharias, “Nanowire-based sensors,” Small, vol. 6, pp. 1705–1722, 2010, doi: 10.1002/smll.201000972.
    [13.] E. Comini, “Metal oxide nanowires as chemical sensors,” Mater. Today, vol. 13, nos. 7–8, pp. 36–44, 2010, doi: 10.1016/S1369-7021(10)70126-7.
    [14.] J. H. Lau, “Evolution, challenge, and outlook of TSV, 3D IC integration and 2.5D IC interposer,” Microelectron. Reliab., vol. 51, no. 1, pp. 17–27, 2011, doi: 10.1016/j.microrel.2010.09.031.
    [15.] S. W. Yoon et al., “3D TSV interposer technology for advanced packaging,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 2, no. 8, pp. 1246–1254, 2012, doi: 10.1109/TCPMT.2012.2195160.
    [16.] A. Abbasi and J. Jahanbin Sardroodi, “Modified N-doped TiO₂ anatase nanoparticle as an ideal O₃ gas sensor: Insights from density functional theory calculations,” Comput. Theor. Chem., vol. 1095, pp. 15–28, 2016, doi: 10.1016/j.comptc.2016.09.011.
    [17.] K. Steiner, G. Sulz, E. Neske, and E. Wagner, “Laser annealing of SnO₂ thin-film gas sensors in single chip packages,” Sens. Actuators B: Chem., vol. 26, nos. 1–3, pp. 64–67, 1995, doi: 10.1016/0925-4005(94)01558-Y.
    [18.] N. Kaur, D. Zappa, N. Poli, and E. Comini, “Integration of VLS-grown WO₃ nanowires into sensing devices for the detection of H₂S and O₃,” ACS Omega, vol. 4, no. 15, pp. 16336–16343, 2019, doi: 10.1021/acsomega.9b01792.
    [19.] F. S. S. Chien, C. R. Wang, Y. L. Chan, H. L. Lin, M. H. Chen, and R. J. Wu, “Fast-response ozone sensor with ZnO nanorods grown by chemical vapor deposition,” Sens. Actuators B: Chem., vol. 144, no. 1, pp. 120–125, 2010, doi: 10.1016/j.snb.2009.10.043.
    [20.] N. Sui, P. Zhang, T. Zhou, and T. Zhang, “Selective ppb-level ozone gas sensor based on hierarchical branch-like In₂O₃ nanostructure,” Sens. Actuators B: Chem., vol. 336, p. 129612, 2021, doi: 10.1016/j.snb.2021.129612.
    [21.] N. Sui, X. Wei, S. Cao, P. Zhang, T. Zhou, and T. Zhang, “Nanoscale bimetallic AuPt-functionalized metal oxide chemiresistors: Ppb-level and selective detection for ozone and acetone,” ACS Sens., vol. 7, pp. 2178–2187, 2022, doi: 10.1021/acssensors.2c00214.
    [22.] H. Steinebach, S. Kannan, L. Rieth, and F. Solzbacher, “H₂ gas sensor performance of NiO at high temperatures in gas mixtures,” Sens. Actuators B: Chem., vol. 151, no. 1, pp. 162–168, 2010, doi: 10.1016/j.snb.2010.09.027.
    [23.] A. Bejaoui, J. Guerin, and K. Aguir, “Modeling of a p-type resistive gas sensor in the presence of a reducing gas,” Sens. Actuators B: Chem., vol. 181, pp. 340–347, 2013, doi: 10.1016/j.snb.2013.01.018.
    [24.] H. Jin, Y. Huang, and J. Jian, “Plate-like Cr₂O₃ for highly selective sensing of nitric oxide,” Sens. Actuators B: Chem., vol. 206, pp. 107–110, 2015, doi: 10.1016/j.snb.2014.09.012.
    [25.] X. G. Zheng, K. Taniguchi, A. Takahashi, Y. Liu, and C. N. Xu, “Room temperature sensing of ozone by transparent p-type semiconductor CuAlO₂,” Appl. Phys. Lett., vol. 85, no. 10, pp. 1728–1729, 2004, doi: 10.1063/1.1784888.
    [26.] S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, and T. Wang, “Room temperature ozone sensing properties of p-type CuCrO₂ nanocrystals,” Sens. Actuators B: Chem., vol. 143, no. 1, pp. 119–123, 2009, doi: 10.1016/j.snb.2009.09.026.
    [27.]
    Z. Deng, X. Fang, D. Li, S. Zhou, R. Tao, W. Dong, T. Wang, G. Meng, and X. Zhu, “Room temperature ozone sensing properties of p-type transparent oxide CuCrO₂,” J. Alloys Compd., vol. 484, pp. 619–621, 2009, doi: 10.1016/j.jallcom.2009.05.001.
    [28.] E. Petromichelaki, E. Gagaoudakis, K. Moschovis, L. Tsetseris, T. D. Anthopoulos, G. Kiriakidis, and V. Binas, “Highly sensitive and room temperature detection of ultra-low concentrations of O₃ using self-powered sensing elements of Cu₂O nanocubes,” Nanoscale Adv., vol. 1, pp. 2009–2017, 2019, doi: 10.1039/C9NA00043G.
    [29.] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature, vol. 415, pp. 617–620, 2002, doi: 10.1038/415617a.
    [30.] X. Chen, Y. Shen, W. Zhang, J. Zhang, D. Wei, R. Lu, L. Zhu, H. Li, and Y. Shen, “In-situ growth of ZnO nanowire arrays on the sensing electrode via a facile hydrothermal route for high-performance NO₂ sensor,” Appl. Surf. Sci., vol. 435, pp. 1096–1104, 2018, doi: 10.1016/j.apsusc.2017.11.222.
    [31.] L. Qin, J. Xu, X. Dong, Q. Pan, Z. Cheng, Q. Xiang, and F. Li, “The template-free synthesis of square-shaped SnO₂ nanowires: The temperature effect and acetone gas sensors,” Nanotechnology, vol. 19, p. 185705, 2008, doi: 10.1088/0957-4484/19/18/185705.
    [32.] S. Steinhauer, E. Brunet, T. Maier, G. C. Mutinati, and A. Köck, “Suspended CuO nanowires for ppb level H₂S sensing in dry and humid atmosphere,” Sens. Actuators B: Chem., vol. 186, pp. 550–556, 2013, doi: 10.1016/j.snb.2013.06.044.
    [33.] S. Steinhauer, E. Brunet, T. Maier, G. C. Mutinati, and A. Köck, “Gas sensing properties of novel CuO nanowire devices,” Sens. Actuators B: Chem., vol. 187, pp. 50–57, 2013, doi: 10.1016/j.snb.2012.09.034.
    [34.] H. T. Hsueh, S. J. Chang, F. Y. Hung, W. Y. Weng, C. L. Hsu, T. J. Hsueh, S. S. Lin, and B. T. Dai, “Ethanol gas sensor of crabwise CuO nanowires prepared on glass substrate,” J. Electrochem. Soc., vol. 158, 2011, doi: 10.1149/1.3551505.
    [35.] U. T. Nakate, G. H. Lee, R. Ahmad, P. Patil, Y. B. Hahn, Y. T. Yu, and E.-K. Suh, “Nanobitter gourd like structured CuO for enhanced hydrogen gas sensor application,” Int. J. Hydrogen Energy, vol. 43, pp. 22705–22714, 2018, doi: 10.1016/j.ijhydene.2018.09.162.
    [36.] J. H. Kim, A. Katoch, S. W. Choi, and S. S. Kim, “Growth and sensing properties of networked p-CuO nanowires,” Sens. Actuators B: Chem., vol. 212, pp. 190–195, 2015, doi: 10.1016/j.snb.2014.12.081.
    [37.] X. Jiang, T. Herricks, and Y. Xia, “CuO nanowires can be synthesized by heating copper substrates in air,” Nano Lett., vol. 2, pp. 1333–1338, 2002, doi: 10.1021/nl0257519.
    [38.] Y. W. Park, N. J. Seong, H. J. Jung, A. Chanda, and S. G. Yoon, “Growth mechanism of the copper oxide nanowires from copper thin films deposited on CuO-buffered silicon substrate,” J. Electrochem. Soc., vol. 157, p. K119, 2010, doi: 10.1149/1.3365058.
    [39.] D. P. Volanti, A. A. Felix, M. O. Orlandi, G. Whitfield, D. J. Yang, E. Longo, H. L. Tuller, J. A. Varela, and E. R. Leite, “The role of hierarchical morphologies in the superior gas sensing performance of CuO-based chemiresistors,” Adv. Funct. Mater., vol. 23, pp. 1759–1766, 2013, doi: 10.1002/adfm.201202332.
    [40.] A. Bejaoui, J. Guerin, J. A. Zapien, and K. Aguir, “Theoretical and experimental study of the response of CuO gas sensor under ozone,” Sens. Actuators B: Chem., vol. 190, pp. 8–15, 2014, doi: 10.1016/j.snb.2013.06.084.
    [41.] E. Comini, G. Faglia, and G. Sberveglieri, “Solid state gas sensing: Humidity influence and compensation strategies,” Sens. Actuators B: Chem., vol. 179, pp. 3–20, 2013, doi: 10.1016/j.snb.2012.10.078.
    [42.] C. Yuan et al., “CuO based inorganic–organic hybrid nanowires: A new type of highly sensitive humidity sensor,” Nanotechnology, vol. 21, p. 415501, 2010, doi: 10.1088/0957-4484/21/41/415501.
    [43.] J. S. Lee, A. Katoch, J. H. Kim, and S. S. Kim, “Effect of Au nanoparticle size on the gas-sensing performance of p-CuO nanowires,” Sens. Actuators B: Chem., vol. 222, pp. 307–314, 2016, doi: 10.1016/j.snb.2015.11.055.
    [44.] E. J. Vardaman et al., “Reliability of through-silicon vias (TSVs): A review,” Microelectron. Reliab., vol. 54, nos. 9–10, pp. 1699–1723, 2014, doi: 10.1016/j.microrel.2014.06.005.
    [45.] S. Thirumalairajan, V. R. Mastelaro, and C. A. Escanhoela Jr., “In-depth understanding of the relation between CuAlO₂ particle size and morphology for ozone gas sensor detection at a nanoscale level,” ACS Appl. Mater. Interfaces, vol. 6, no. 23, pp. 21739–21749, 2014, doi: 10.1021/am507158z.
    [46.] N. Barsan and U. Weimar, “Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO₂ sensors in the presence of humidity,” J. Phys.: Condens. Matter, vol. 15, no. 20, pp. R813–R839, 2003, doi: 10.1088/0953-8984/15/20/201.
    [47.] N. Yamazoe, “Toward innovations of gas sensor technology,” Sens. Actuators B: Chem., vol. 108, nos. 1–2, pp. 2–14, 2005, doi: 10.1016/j.snb.2004.12.075.
    [48.] N. Yamazoe, “Receptor function and response of semiconductor gas sensor,” J. Sens., vol. 2009, Art. no. 875704, 2009, doi: 10.1155/2009/875704.
    [49.] N. Barsan and U. Weimar, “Conduction model of metal oxide gas sensors,” J. Electroceram., vol. 7, pp. 143–167, 2001, doi: 10.1023/A:1014405811371.
    [50.] N. Yamazoe and K. Shimanoe, “Theory of power laws for semiconductor gas sensors,” Sens. Actuators B: Chem., vol. 128, no. 2, pp. 566–573, 2008, doi: 10.1016/j.snb.2007.07.036.
    [51.] N. Yamazoe and N. Miura, “Environmental gas sensing,” Sens. Actuators B: Chem., vol. 20, nos. 2–3, pp. 95–102, 1994, doi: 10.1016/0925-4005(93)01183-5.
    [52.] G. Korotcenkov, Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications. New York, NY, USA: Springer, 2013, doi: N/A.
    [53.] A. Kolmakov and M. Moskovits, “Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures,” Annu. Rev. Mater. Res., vol. 34, pp. 151–180, 2004, doi: 10.1146/annurev.matsci.34.040203.112141.
    [54.] N. S. Ramgir, Y. Yang, and M. Zacharias, “Nanowire-based sensors,” Small, vol. 6, pp. 1705–1722, 2010, doi: 10.1002/smll.201000972.
    [55.] H.-T. Hsueh, “Growth of Si, CuO and ZnO nanowires and the fabrication of nanowire sensors,” Ph.D. dissertation, Inst. Nanotechnology and Microsystems Engineering, National Cheng Kung University, Tainan, Taiwan, 2012, doi: N/A.
    [56.] J. Zhang, X. Liu, G. Neri, and N. Pinna, “Nanostructured materials for room-temperature gas sensors,” Adv. Mater., vol. 28, no. 5, pp. 795–831, 2016, doi: 10.1002/adma.201503746.
    [57.] G. Korotcenkov, “Metal oxides for solid-state gas sensors: What determines our choice?” Mater. Sci. Eng. B, vol. 139, nos. 1–2, pp. 1–23, 2007, doi: 10.1016/j.mseb.2007.01.044.
    [58.] Z. L. Wang, “Zinc oxide nanostructures: Growth, properties and applications,” J. Phys.: Condens. Matter, vol. 16, no. 25, pp. R829–R858, 2004, doi: 10.1088/0953-8984/16/25/R01.
    [59.] C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull., vol. 32, no. 2, pp. 99–108, 2007, doi: 10.1557/mrs2007.33.
    [60.] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, no. 5533, pp. 1289–1292, 2001, doi: 10.1126/science.1062711.
    [61.] J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, “Nanostructured polyaniline sensors,” Chem. Eur. J., vol. 10, no. 6, pp. 1315–1319, 2004, doi: 10.1002/chem.200305486.
    [62.] E. Espid and F. Taghipour, “UV-LED photo-activated chemical gas sensors: A review,” Crit. Rev. Solid State Mater. Sci., vol. 42, no. 5, pp. 416–432, 2017, doi: 10.1080/10408436.2016.1230531.
    [63.] S. Capone, A. Forleo, L. Francioso, R. Rella, P. Siciliano, J. Spadavecchia, D. S. Presicce, and A. M. Taurino, “Solid state gas sensors: State of the art and future activities,” J. Optoelectron. Adv. Mater., vol. 5, no. 5, pp. 1335–1348, 2003, doi: N/A.
    [64.] A. Dey, “Semiconductor metal oxide gas sensors: A review,” Mater. Sci. Eng. B, vol. 229, pp. 206–217, 2018, doi: 10.1016/j.mseb.2017.12.036.
    [65.] G. Faglia, “Gas sensing properties of semiconducting metal oxide nanostructures,” Sensors, vol. 14, no. 5, pp. 8529–8560, 2014, doi: 10.3390/s140508529.
    [66.] W. Kern and D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev., vol. 31, no. 2, pp. 187–206, 1970, doi: N/A.
    [67.] W. Kern, “The evolution of silicon wafer cleaning technology,” J. Electrochem. Soc., vol. 137, no. 6, pp. 1887–1892, 1990, doi: 10.1149/1.2086770.
    [68.] W. Kern, “Overview and evolution of silicon wafer cleaning technology,” in Handbook of Semiconductor Wafer Cleaning Technology, 2nd ed. Norwich, NY, USA: William Andrew, 2008, ch. 1, doi: N/A.
    [69.] A. P. Karmarkar, X. Xu, and V. Moroz, “Performance and reliability analysis of 3D-integration structures employing through silicon via (TSV),” Microelectron. Reliab., vol. 49, nos. 9–11, pp. 1039–1048, 2009, doi: N/A.
    [70.] J. H. Lau, “Evolution, challenge, and outlook of TSV, 3D IC integration and 2.5D IC interposer,” Microelectron. Reliab., vol. 51, no. 1, pp. 17–27, 2011, doi: 10.1016/j.microrel.2010.09.031.
    [71.] J. H. Lau, TSV 3D Integration and 2.5D Interposer Technology. New York, NY, USA: McGraw-Hill, 2013, doi: N/A.
    [72.] S. W. Yoon et al., “3D TSV interposer technology for advanced packaging,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 2, no. 8, pp. 1246–1254, 2012, doi: 10.1109/TCPMT.2012.2195160.
    [73.] A. W. Topol et al., “Three-dimensional integrated circuits,” IBM J. Res. Dev., vol. 50, nos. 4–5, pp. 491–506, 2006, doi: 10.1147/rd.504.0491.
    [74.] K. Banerjee et al., “3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration,” Proc. IEEE, vol. 89, no. 5, pp. 602–633, 2001, doi: 10.1109/5.929647.
    [75.] R. R. Tummala, “SOP: What is it and why? A new microsystem-integration technology paradigm—Moore’s law for system integration of miniaturized convergent systems of the next decade,” IEEE Trans. Adv. Packag., vol. 27, no. 2, pp. 241–249, 2004, doi: 10.1109/TADVP.2004.825893.
    [76.] R. S. Patti, “Three-dimensional integrated circuits and the future of system-on-chip designs,” Proc. IEEE, vol. 94, no. 6, pp. 1214–1224, 2006, doi: 10.1109/JPROC.2006.873611.
    [77.] F. Laermer and A. Schilp, “Method of anisotropically etching silicon,” U.S. Patent 5,501,893, Mar. 26, 1996, doi: N/A.
    [78.] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene copper electroplating for chip interconnections,” IBM J. Res. Dev., vol. 42, no. 5, pp. 567–574, 1998, doi: 10.1147/rd.425.0567.
    [79.] T. P. Moffat, D. Wheeler, S.-K. Kim, and D. Josell, “Superfilling and the curvature enhanced accelerator coverage mechanism,” J. Electrochem. Soc., vol. 153, no. 2, pp. C127–C132, 2006, doi: 10.1149/1.2138559.
    [80.] M. R. Oliver, Chemical-Mechanical Planarization of Semiconductor Materials. Berlin, Germany: Springer, 2004, doi: N/A.
    [81.] J. H. Lau and T. G. Ubbink, “Temporary bonding/debonding and wafer thinning for TSV manufacturing,” Microelectron. Reliab., vol. 52, nos. 9–10, pp. 1751–1756, 2012, doi: 10.1016/j.microrel.2012.04.005.
    [82.] J. D. L. Dear and A. Jourdain, “Temporary wafer bonding and debonding technologies for 3D integration,” Microelectron. Eng., vol. 107, pp. 66–71, 2013, doi: 10.1016/j.mee.2013.01.002.
    [83.] E. J. Vardaman et al., “Reliability of through-silicon vias (TSVs): A review,” Microelectron. Reliab., vol. 54, nos. 9–10, pp. 1699–1723, 2014, doi: 10.1016/j.microrel.2014.06.005.
    [84.] J. P. Gambino, E. G. Colgan, and J. P. Gambino, “Silicon and copper TSV integration for 3D chip stacking,” Microelectron. Eng., vol. 88, no. 7, pp. 1643–1655, 2011, doi: 10.1016/j.mee.2011.01.070.
    [85.] J. H. Lau and C. Lee, “Thermal management of 3D IC integration with TSV,” Microelectron. Reliab., vol. 52, no. 1, pp. 266–275, 2012, doi: 10.1016/j.microrel.2011.10.012.
    [86.] C. Okoro, A. Sharan, and M. Swaminathan, “Electrical modeling and characterization of TSV interconnects,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 4, no. 11, pp. 1766–1775, 2014, doi: 10.1109/TCPMT.2014.2345508.
    [87.] S. M. Alam, J. A. Kistler, R. Chatterjee, and R. A. Panth, “Characterization and modeling of through-silicon vias for 3D ICs,” IEEE Trans. Electron Devices, vol. 55, no. 6, pp. 1311–1318, 2008, doi: 10.1109/TED.2008.923738.
    [88.] P. Garrou, C. Bower, and P. Ramm, Eds., Handbook of 3D Integration: Technology and Applications of 3D Integrated Circuits. Weinheim, Germany: Wiley-VCH, 2008, doi: N/A.
    [89.] C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res., vol. 42, pp. 399–434, 2012, doi: 10.1146/annurev-matsci-070511-155048.
    [90.] F. Ruffino and M. G. Grimaldi, “Controlled dewetting as a fabrication method for metal nanostructures,” J. Mater. Sci., vol. 49, pp. 5714–5735, 2014, doi: 10.1007/s10853-014-8293-7.
    [91.] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. Hoboken, NJ, USA: Wiley, 2007, doi: N/A.
    [92.] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed. Upper Saddle River, NJ, USA: Prentice Hall, 2001, doi: N/A.
    [93.] U.S. Environmental Protection Agency, Integrated Science Assessment (ISA) for Ozone and Related Photochemical Oxidants. Washington, DC, USA: U.S. EPA, 2020.
    [94.] C. Y. Huang, X. R. He, and T. Y. Dai, “Realization of a self-powered Cu₂O ozone gas sensor through the lateral photovoltaic effect,” J. Mater. Chem. C, vol. 10, pp. 16517–16523, 2022, doi: 10.1039/D2TC03856K.
    [95.] C. Y. Huang, X. R. He, J. J. Jhang, J.-H. Wu, T. H. Wu, T. Y. Lin, and T. Y. Dai, “A self-powered dual-functional hybrid Cu₂O/SiNWs heterojunction with applications in broadband photodetectors and ozone gas sensors,” Sens. Actuators A: Phys., vol. 347, p. 113992, 2022, doi: 10.1016/j.sna.2022.113992.
    [96.] W. Kern, “The evolution of silicon wafer cleaning technology,” J. Electrochem. Soc., vol. 137, no. 6, pp. 1887–1892, 1990, doi: 10.1149/1.2086825.
    [97.] J. S. Lee, A. Katoch, J. H. Kim, and S. S. Kim, “Effect of Au nanoparticle size on the gas-sensing performance of p-CuO nanowires,” Sens. Actuators B: Chem., vol. 222, pp. 307–314, 2016, doi: 10.1016/j.snb.2015.08.059.
    [98.] D. A. Hashim, A. M. Alwan, and M. F. Jawad, “Influence of Ag NPs on silicon nanocolumns NH₃ gas sensors,” J. Electrochem. Soc., vol. 165, pp. B773–B780, 2018, doi: 10.1149/2.0891814jes.
    [99.] Z. Ziadi, A. Sellami, A. B. Kouki, A. Boudiba, A. Roussel, A. L. Loiseau, and C. Ouerghi, “Electronic metal–support interactions at the catalytic interfaces of CuO nanowires decorated with Pt nanoparticles for methanol oxidation and CO sensing,” ACS Appl. Nano Mater., vol. 3, pp. 8257–8267, 2020, doi: 10.1021/acsanm.0c01777.
    [100.] J. H. Kim, A. Katoch, S. W. Choi, and S. S. Kim, “Improving the hydrogen sensing properties of SnO₂ nanowire-based conductometric sensors by Pd-decoration,” Sens. Actuators B: Chem., vol. 285, pp. 358–367, 2019, doi: 10.1016/j.snb.2019.01.100.
    [101.] A. P. Karmarkar, X. Xu, and V. Moroz, “Performance and reliability analysis of 3D-integration structures employing through silicon via (TSV),” Microelectron. Reliab., vol. 49, nos. 9–11, pp. 1039–1048, 2009, doi: 10.1016/j.microrel.2009.07.005.
    [102.] S. W. Yoon, J. H. Lau, K. N. Tu, and R. Huang, “3D TSV interposer technology for advanced packaging,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 2, no. 8, pp. 1246–1254, 2012, doi: 10.1109/TCPMT.2012.2195160.
    [103.] J. H. Lau, TSV 3D Integration and 2.5D Interposer Technology. New York, NY, USA: McGraw-Hill, 2013. (no DOI)
    [104.] E. J. Vardaman, M. T. F. Chang, S. H. Choa, and A. Reay, “Reliability of through-silicon vias (TSVs): A review,” Microelectron. Reliab., vol. 54, nos. 9–10, pp. 1699–1723, 2014, doi: 10.1016/j.microrel.2014.06.005.
    [105.] P. Garrou, C. Bower, and P. Ramm, Eds., Handbook of 3D Integration: Technology and Applications of 3D Integrated Circuits. Weinheim, Germany: Wiley-VCH, 2008. (no DOI)
    [106.] A. W. Topol, D. C. La Tulipe Jr., L. Shi, et al., “Three-dimensional integrated circuits,” IBM J. Res. Dev., vol. 50, nos. 4–5, pp. 491–506, 2006, doi: 10.1147/rd.504.0491.
    [107.] E. Comini, G. Faglia, and G. Sberveglieri, “Solid state gas sensing: Humidity influence and compensation strategies,” Sens. Actuators B: Chem., vol. 179, pp. 3–20, 2013, doi: 10.1016/j.snb.2012.10.078.
    [108.] C. Yuan, Y. Wang, L. Yin, and L. Zhang, “CuO based inorganic–organic hybrid nanowires: A new type of highly sensitive humidity sensor,” Nanotechnology, vol. 21, p. 415501, 2010, doi: 10.1088/0957-4484/21/41/415501.
    [109.] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. Hoboken, NJ, USA: Wiley, 2007. (no DOI)
    [110.] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed. Upper Saddle River, NJ, USA: Prentice Hall, 2001. (no DOI)
    [111.] C. Okoro, A. Sharan, and M. Swaminathan, “Electrical modeling and characterization of TSV interconnects,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 4, no. 11, pp. 1766–1775, 2014, doi: 10.1109/TCPMT.2014.2345508.

    QR CODE