簡易檢索 / 詳目顯示

研究生: 周世元
Chou, Shih-Yuan
論文名稱: 景氣不確定性下產能擴充決策分析
Decision Analysis of Capacity Expansion Planning under Market Uncertainty
指導教授: 莊雅棠
Chuang, Ya-Tang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 54
中文關鍵詞: 產能擴充部分可觀察馬可夫決策過程動態規劃市場景氣
外文關鍵詞: Capacity expansion, Partially observable Markov decision process, Dynamic programming, Market uncertainty
相關次數: 點閱:102下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究考慮景氣不確定下,單一製造商的產能擴充決策分析。我們假設需求隨著景氣而變動,相較於過往的文獻,大多假設市場景氣是可以觀測得知,而我們是假設決策者對於市場景氣的認知是未知且無法觀測。本研究會以最大化利潤為目標,進行產能擴充決策。其中,我們提出一個能描述市場景氣波動之產能擴充決策的部分可觀察式馬可夫決策過程(partially observable Markov decision process,POMDP)模型,用於景氣狀態不確定下之情境;製造商能藉由當期顧客實際需求量作觀測函數,利用觀測函數去更新後期對於市場景氣狀態的置信度,使製造商在進行產能擴充時,有一定的信心程度得知市場景氣樣貌,大幅降低需求的不確定性,最終將決策過程以動態規劃最優化模型進行求解。進行數值求解後,求得製造商在不同狀態下各期的最佳產能擴充決策。本研究發現,無論市場景氣狀態的變動如何,當機台擴充數量達到臨界值時,製造商偏向不擴充機台數,藉此節省成本支出,以提高期望利潤。此外,在雙景氣變動的考量下,本研究提出一個近似動態規劃方法來求解對於景氣不確定時的決策問題;多景氣變動的考量下,利用短視近利(myopic)決策求解多景氣不確定時的決策問題,並驗證該策略能近似於最佳解。

    This research addresses the decision analysis of capacity expansion for a single manufacturer considering economic uncertainty. Unlike most existing literature that assumes market conditions can be observed, we assume that decision-makers have limited knowledge and cannot directly observe the state of the market. The objective of this study is to maximize profit through capacity expansion decisions. We propose a partially observable Markov decision process (POMDP) model that captures the market’s volatility and enables decision-making under uncertain economic conditions. The manufacturer utilizes the actual customer demand as an observation function to update its belief about the state of the market, reducing demand uncertainty when making capacity expansion decisions. The optimal decision process is then solved using dynamic programming. The numerical analysis provides the manufacturer’s optimal capacity expansion decisions for different states. Our findings suggest that regardless of changes in market conditions, the manufacturer tends to refrain from expanding the number of production units once the expansion quantity reaches a critical value, thus saving costs and increasing expected profits. Additionally, under considerations of dual economic fluctuations, we propose an approximate dynamic programming method to solve decision problems under economic uncertainty. Furthermore, for multiple economic fluctuations, we employ a myopic decision strategy to approximate the optimal solution for decision problems under uncertain economic conditions and validate its effectiveness.

    摘要 i 英文延伸摘要 ii 目錄 vi 表目錄 viii 圖目錄 ix 第一章緒論 1 1.1 研究背景與動機 1 1.2 研究目標 2 1.3 論文架構 3 第二章文獻回顧 6 2.1 產能之定義與性質 6 2.2 產能擴充決策考慮因子 6 2.2.1 需求為不確定性因子 7 2.2.2 前置時間為不確定性因子 7 2.2.3 定價為不確定性因子 8 2.3 模型架構 8 2.3.1 確定型模型 8 2.3.2 隨機型模型 9 2.4 求解方法 11 2.4.1 湯普森抽樣法(Thompson sampling, TS) 11 2.4.2 短視近利(myopic)策略 11 2.5 小結 12 第三章模型建構 13 3.1 MDP模型 13 3.2 問題定義與假設 16 3.3 問題考量的決策變數與參數 17 3.4 POMDP模型 18 3.4.1 建立需求及景氣變化 18 3.4.2 POMDP模型形式 19 第四章數值分析 22 4.1 求解方法 22 4.1.1 MDP模型求解步驟 22 4.1.2 POMDP模型求解方法 23 4.2 範例與參數設定 25 4.2.1 參數設定 25 4.3 雙景氣下的數值分析 26 4.3.1 範例求解 26 4.3.2 景氣穩定度的調整 27 4.3.3 模擬與比較 31 4.3.4 湯普森抽樣法 34 4.4 多景氣下的數值分析 36 4.4.1 調整折扣因子 39 第五章結論與未來規劃 49 5.1 結論 49 5.2 未來研究方向 50 參考文獻 52

    Askin, R. G., & Mitwasi, M. G. (1992). Integrating facility layout with process selection and capacity planning. European Journal of Operational Research, 57(2), 162–173.

    Aviv, Y., & Pazgal, A. (2005). A partially observed markov decision process for dynamic pricing. Management Science, 51(9), 1400–1416.

    Besanko, D., Doraszelski, U., Lu, L. X., & Satterthwaite, M. (2010). On the role of demand and strategic uncertainty in capacity investment and disinvestment dynamics. International Journal of Industrial Organization, 28(4), 383–389.

    Cassandra, A. R. (1998). A survey of POMDP applications. In Working notes of AAAI 1998 fall symposium on planning with partially observable Markov decision processes, vol. 1724.

    Chan, C. W., & Farias, V. F. (2009). Stochastic depletion problems: Effective myopic policies for a class of dynamic optimization problems. Mathematics of Operations Research, 34(2), 333–350.

    Cheng, G., Xie, J., & Zheng, Z. (2019). Optimal stopping for medical treatment with predictive information. SSRN Electronic Journal, (p. 3397530).

    Chien, C.-F., Chen, Y.-J., & Peng, J.-T. (2010). Manufacturing intelligence for semiconductor demand forecast based on technology diffusion and product life cycle. International Journal of Production Economics, 128(2), 496–509.

    Das, S. K., & Abdel-Malek, L. (2003). Modeling the flexibility of order quantities and lead-times in supply chains. International Journal of Production Economics, 85(2), 171–181.

    Dell’Olmo, P., & Lulli, G. (2003). A dynamic programming approach for the airport capacity allocation problem. IMA Journal of Management Mathematics, 14(3), 235 249.

    Dixit, R. K., Dixit, A. K., & Pindyck, R. S. (1994). Investment under uncertainty. Princeton university press.

    Dolgui, A., & Ould-Louly, M.-A. (2002). A model for supply planning under lead time uncertainty. International Journal of Production Economics, 78(2), 145–152.

    Easton, F. F., & Moodie, D. R. (1999). Pricing and lead time decisions for make-to order firms with contingent orders. European Journal of Operational Research, 116(2), 305–318.

    Ganti, R., Sustik, M., Tran, Q., & Seaman, B. (2018). Thompson sampling for dynamic pricing. arXiv:1802.03050.

    G¨ox, R. F. (2002). Capacity planning and pricing under uncertainty. Journal of Management Accounting Research, 14(1), 59–78.

    Kumru, M. (2011). Determining the capacity and its level of utilization in make-to order manufacturing: A simple deterministic model for single-machine multiple product case. Journal of Manufacturing Systems, 30(2), 63–69.

    Lin, J. T., Chen, T.-L., &Chu, H.-C. (2014). A stochastic dynamic programming approach for multi-site capacity planning in TFT-LCD manufacturing under demand uncertainty. International Journal of Production Economics, 148, 21–36.

    Lin, J. T.,Wu, C.-H., Chen, T.-L., & Shih, S.-H. (2011). A stochastic programming model for strategic capacity planning in thin film transistor-liquid crystal display (TFT-LCD) industry. Computers & Operations Research, 38(7), 992–1007.

    Mart´ınez-Costa, C., Mas-Machuca, M., Benedito, E., & Corominas, A. (2014). A review of mathematical programming models for strategic capacity planning in manufacturing. International Journal of Production Economics, 153, 66–85.

    Poncelet, K., Delarue, E., Six, D., & D’haeseleer, W. (2016). Myopic optimization models for simulation of investment decisions in the electric power sector. In 2016 13th International Conference on the European Energy Market (EEM), (pp. 1–9). IEEE.

    Rajagopalan, S., Singh, M. R., & Morton, T. E. (1998). Capacity expansion and replacement in growing markets with uncertain technological breakthroughs. Management Science, 44(1), 12–30.

    Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., Wen, Z., et al. (2018). A tutorial on thompson sampling. Foundations and TrendsR in Machine Learning, 11(1), 1–96.

    Thomas, J. (1970). Price-production decisions with deterministic demand. Management Science, 16(11), 747–750.

    Van Mieghem, J. A. (2003). Commissioned paper: Capacity management, investment, and hedging: Review and recent developments. Manufacturing & Service Operations Management, 5(4), 269–302.

    Wu, C.-H., & Chuang, Y.-T. (2010). An innovative approach for strategic capacity portfolio planning under uncertainties. European Journal of Operational Research, 207(2), 1002–1013.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE