簡易檢索 / 詳目顯示

研究生: 吳豐銘
Wu, Feng-Ming
論文名稱: Pt添加對Cu/SAC305/Cu回銲接合材拉伸強度的影響
Effect of Pt Addition on Tensile Strength of Reflowed Cu/SAC305/Cu Joints
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 53
中文關鍵詞: 銲錫回銲拉伸
外文關鍵詞: solder, reflow, tensile
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電子封裝產品使用的過程中,銲錫接點可能會受到外力的作用而破壞,故銲錫與基板接合後的機械強度是研究封裝體可靠度的重點課題。本研究之目的主要探討Pt添加對Cu/SAC305/Cu回銲接合材拉伸強度的影響。
    實驗結果顯示,Pt的添加使得界面IMC層的成分由SAC305的Cu6Sn5轉變為(Cu,Pt)6Sn5,並且令IMC層厚度均勻成長,而不易有SAC305局部快速成長的情況。在相同的回銲時間下,SAC305-xPt (0.03Pt及0.05Pt)之界面IMC層成長快於SAC305,接合強度亦隨Pt的添加而下降。此外,回銲時間的增長(5 min增至60 min),SAC305之破斷位置由IMC-Solder混合破斷區轉為IMC破斷區;0.03Pt及0.05Pt則分別皆為Solder破斷區和IMC-Solder混合破斷區,其中以IMC破斷區的接合強度最高。
    對照銲錫合金的微觀組織及拉伸試驗數據,得知Pt的添加會出現 (Pt,Cu)Sn4金屬間化合物,並且降低拉伸變形阻抗。因此,Pt的添加在SAC305銲錫合金拉伸變形阻抗軟化之情況下,接合材的拉伸破壞位置由未添加Pt之界面IMC層破壞轉為銲錫合金本體破壞。

    Solder joints may be damaged by external force during using of electronic packaged products, so the mechanical strength of joints between the solder and the substrate is important to the reliability of electronic package. The aim of the study is to explore the effect of Pt addition on tensile strength of reflowed Cu/SAC305/Cu joints.
    The results show that the interfacial IMC layer phase of SAC305 changes from Cu6Sn5 into (Cu,Pt)6Sn5 after adding Pt into SAC305. The Pt addition can make the interfacial IMC layer grows uniformly, not like that of SAC305 growing faster in local. In the same reflow time, SAC305-xPt (0.03Pt and 0.05Pt) have the thicker interfacial IMC layer than SAC305, and the strength of joints is reduced by the Pt addition. Besides, as the reflow time increases (5 min to 60 min), the fracture location of SAC305 turns from the mixture of IMC-Solder zone to IMC zone. The fracture location of 0.03Pt exhibits Solder zone while the fracture location of 0.05Pt exhibits the mixture of IMC-Solder zone in both reflow time. Among the three types of fracture location, the fracture location which exhibits IMC zone corresponds to the highest joint strength.
    Comparing the microstructure of solder alloys with the tensile test data, the (Pt,Cu)Sn4 can be observed and the resistance to plastic deformation descends after adding Pt into SAC305. Therefore, adding Pt into SAC305 causes softening of the solder alloys and then makes the fracture location of solder joints moves from the interfacial IMC layer to the solder matrix.

    摘要 I Abstract II 誌謝 III 總目錄 IV 表目錄 VI 圖目錄 VII 第一章 前言 1 第二章 文獻回顧 2 2-1 軟銲技術介紹 2 2-2 Sn-Ag-Cu銲錫合金 2 2-3 錫銅界面 3 2-4 Pt與銲錫材料反應的研究現況 3 2-5 接合強度評估-推剪力與拉伸試驗 3 第三章 實驗方法 9 3-1 研究架構 9 3-2 合金配製 9 3-3 試片製作 9 3-3-1 回銲接合試片 9 3-3-2 合金澆鑄試片 10 3-4 金相觀察及解析 10 3-5 拉伸破斷試驗 11 3-5-1 回銲接合材拉伸破斷試驗 11 3-5-2 合金拉伸破斷試驗 11 第四章 實驗結果 16 4-1 接合材微觀組織 16 4-2 接合材拉伸試驗 17 4-2-1 拉伸強度 17 4-2-2 破斷面觀察 17 4-3 合金微觀組織 18 4-4 合金拉伸試驗 19 4-4-1 拉伸機械性質 19 4-4-2 拉伸破斷次表面觀察 19 4-4-3 加工硬化率 19 4-4-4 拉伸破斷韌性 20 第五章 討論 43 5-1 Pt添加對接合材界面組織及拉伸強度的影響 43 5-2 Pt添加對銲錫合金拉伸機械性質的影響 44 5-3 接合材與銲錫合金之綜合探討 45 第六章 結論 50 參考文獻 51 表3-1 試片代號及成分(wt%) 12 表4-1 回銲60 min接合試片之EDS分析 21 表4-2 各組回銲條件之銲錫基地銅濃度 22 表5-1 各組回銲條件與破斷位置、接合強度之比較 46 表5-2 0.1Pt合金中各相奈米壓痕分析 47 圖2-1 錫銀二元相圖 5 圖2-2 錫銀銅三元相圖共晶區局部放大(溫度:℃) 6 圖2-3 錫銅二元相圖 7 圖2-4 錫鉑二元相圖 8 圖3-1 研究架構 13 圖3-2 回銲接合模具尺寸及接合拉伸試片取樣示意圖(單位:mm) 14 圖3-3 接合拉伸試片尺寸(單位:mm) 14 圖3-4 合金澆鑄模具尺寸及合金拉伸試片取樣示意圖(單位:mm) 15 圖3-5 合金拉伸試片尺寸(單位:mm) 15 圖4-1 界面IMC層縱剖面SEM照片(左為回銲5 min;右為回銲60 min):(a)(b)SAC305;(c)(d)0.03Pt;(e)(f)0.05Pt 23 圖4-2 EPMA分析:回銲60 min之0.05Pt接合試片 24 圖4-3 接合試片之界面IMC層厚度 25 圖4-4 回銲60 min界面IMC層SEM俯視圖:(a)SAC305;(b)0.03Pt;(c) 0.05Pt 26 圖4-5 接合試片之銲錫基地OM觀察(左為回銲5 min;右為回銲60 min):(a)(b)SAC305;(c)(d)0.03Pt;(e)(f)0.05Pt 27 圖4-6 接合試片之銲錫基地共晶區面積率 28 圖4-7 接合試片拉伸強度 29 圖4-8 回銲5 min之拉伸破斷面SEM照片(左為低倍率;右為高倍率):(a)SAC305;(b)0.03Pt;(c)0.05Pt 30 圖4-9 回銲60 min之拉伸破斷面SEM照片(左為低倍率;右為高倍率):(a)SAC305;(b)0.03Pt;(c)0.05Pt 31 圖4-10 Sn-3.0Ag-0.5Cu-xPt合金試片之OM觀察:(a)SAC305;(b)0.03Pt;(c)0.05Pt;(d)0.1Pt 32 圖4-11 0.1Pt合金中針狀晶出相之分布位罝OM觀察:(a)穿越初晶Sn;(b)與初晶Sn相切;(c)共晶區 33 圖4-12 0.1Pt合金之EPMA元素分析 34 圖4-13 Sn-3.0Ag-0.5Cu-xPt合金中各相面積率 35 圖4-14 Sn-3.0Ag-0.5Cu-xPt合金中之SDAS比較 36 圖4-15 Sn-3.0Ag-0.5Cu-xPt合金拉伸之工程應力-應變曲線 37 圖4-16 Sn-3.0Ag-0.5Cu-xPt合金拉伸之動態再結晶OM觀察:(a)SAC305;(b)0.03Pt;(c)0.05Pt;(d)0.1Pt 38 圖4-17 Sn-3.0Ag-0.5Cu-xPt合金拉伸機械性質:(a)YS及UTS;(b)UE及TE 39 圖4-18 Sn-3.0Ag-0.5Cu-xPt合金拉伸破斷次表面OM觀察:(a)SAC305;(b)0.03Pt;(c)0.05Pt;(d)0.1Pt 40 圖4-19 Sn-3.0Ag-0.5Cu-xPt合金之:(a)真應力-真塑性應變曲線;(b)加工硬化率 41 圖4-20 Sn-3.0Ag-0.5Cu-xPt合金之拉伸破斷韌性 42 圖5-1 接合試片拉伸破斷位置示意圖 48 圖5-2 0.1Pt合金之靠近及遠離破斷次表面OM觀察 49

    1.M. Amagai, “A study of nanoparticles in Sn–Ag based lead free solders”, Microelectronics Reliability, 48, pp. 1-16, 2008.
    2.D.Y.R. Chong, F.X. Che, J.H.L. Pang, K. Ng, J.Y.N. Tan, P.T.H. Low, “Drop impact reliability testing for lead-free and lead-based soldered IC packages”, Microelectronics Reliability, 46, pp. 1160–1171, 2006.
    3.E.H. Wong, K.M. Lim, N. Lee, S. Seah, C. Hoe, J. Wang, “Drop impact test - mechanics & physics of failure”, Electronics Packaging Technology Conference, pp. 327-333, 2002.
    4.J. Luan, T.Y. Tee, E. Pek, C.T. Lim, Z. Zhong, “Modal analysis and dynamic responses of board level drop test”, Electronics Packaging Technology Conference , pp. 233-243, 2003.
    5.陳博聖,「Sn-3.5Ag-xCu無鉛銲錫之熔斷電流及凝固表面皮膜特性分析」,國立成功大學材料科學及工程學系,碩士論文,民國94年。
    6.M. Abtew, G. Selvaduray, “Lead-free solders in microelectronics”, Materials Science and Engineering, 27, pp. 95-141, 2000.
    7.Ag-Sn system, calculated phase diagrams, National Institute of Standards and Technology.
    http://www.metallurgy.nist.gov/phase/solder/agsn.html
    8.Ag-Cu-Sn system, calculated phase diagrams, National Institute of Standards and Technology.
    http://www.metallurgy.nist.gov/phase/solder/agcusn.html
    9.Cu-Sn system, calculated phase diagrams, National Institute of Standards and Technology.
    http://www.metallurgy.nist.gov/phase/solder/cusn.html
    10.T. Laurila, V. Vuorinen, J.K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials”, Materials Science and Engineering R, 49, pp. 1–60, 2005.
    11.S.C. Yang, W.C. Chang, Y.W. Wang, and C.R. Kao, “Interfacial reaction and wetting behavior between Pt and molten solder”, Journal of Electronic Materials, 38, pp. 25-32, 2009.
    12.J.F. Kuhmann , C.-H. Chiang , P. Harde , F. Reier , W. Oesterle , I. Urban, A. Klein, “Pt thin-film metallization for FC-bonding using SnPb60/40 solder bump metallurgy”, Materials Science and Engineering A, 242, pp. 22–25, 1998.
    13.M. Klein, B. Wiens, M. Hutter, H. Oppermann, R. Aschenbrenner, H. Reichl, “Behaviour of platinum as UBM in flip chip solder joints”, Electronic Components and Technology Conference, pp. 40-45, 2000.
    14.W.G. Bader, “Dissolution of Au, Ag, Pd, Pt, Cu and Ni in a molten tin-lead solder”, Welding Journal, 48, pp. 551-557, 1969.
    15.T. Biggs, S.S. Taylor, E. van der Lingen, “The hardening of platinum alloys for potential jewellery application”, Platinum Metals Review, 49, pp, 2-15, 2005.
    16.S.J. Wang, C.Y. Liu, “Coupling effect in Pt/Sn/Cu sandwich solder joint structures”, Acta Materialia, 55, pp. 3327–3335, 2007.
    17.T.H. Kim and Y.-H. Kim, “Sn-Ag-Cu and Sn-Cu solders : Interfacial reactions with platinum”, Journal of the Minerals, Metals and Materials Society, 56, pp. 45-49, 2004.
    18.黃頌閔,「不同迴銲條件之Sn-Ag-Cu 無鉛錫球接合推剪阻抗之韋伯分析」,國立成功大學材料科學及工程學系,碩士論文,民國95年。
    19.P.-C. Shih, K.-L. Lin, “Interfacial microstructure and shear behavior of Sn–Ag–Cu solder balls joined with Sn–Zn–Bi paste”, Journal of Alloys and Compounds, 422, pp. 153–163, 2006.
    20.J.-W. Yoon, S.-W. Kim, S.-B. Jung, “IMC morphology, interfacial reaction and joint reliability of Pb-free Sn–Ag–Cu solder on electrolytic Ni BGA substrate”, Journal of Alloys and Compounds, 392, pp. 247–252, 2005.
    21.K.H. Prakash, T. Sritharan, “Tensile fracture of tin–lead solder joints in copper”, Materials Science and Engineering A, 379, pp. 277–285, 2004.
    22.K.S. Kim, S.H. Huh, K. Suganuma, “Effects of fourth alloying additive on microstructures and tensile properties of Sn-Ag-Cu alloy and joints with Cu ”, Microelectronics Reliability, 43, pp. 259-267, 2003.
    23.R. Mayappan, A. B. Ismail, Z. A. Ahmad, T. Ariga, L. B. Hussain, “The effect of crosshead speed on the joint strength between Sn-Zn-Bi lead-free solders and Cu substrate”, Journal of Alloys and Compounds, 436, pp. 112–117, 2007.
    24.J.-W. Yoon, S.-B. Jung, “Effect of surface finish on interfacial reactions of Cu/Sn–Ag–Cu/Cu(ENIG) sandwich solder joints”, Journal of Alloys and Compounds, 448, pp. 177–184, 2008.
    25.M.E. Loomans, M.E. Fine, “Tin-Silver-Copper Eutectic Temperature and Composition”, Metallurgical and Materials Transactions A, 31, pp. 1155-1162, 2000.

    下載圖示 校內:2012-08-20公開
    校外:2012-08-20公開
    QR CODE