簡易檢索 / 詳目顯示

研究生: 許仁瑋
Hsu, Jen-Wei
論文名稱: 運用二階雜訊整型且無須額外時脈之CMOS環形振盪器式溫度感測器
A Reference-Less Ring Oscillator-Based CMOS Temperature Sensor With Second Order Noise Shaping
指導教授: 鄭光偉
Cheng, Kuang-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 139
中文關鍵詞: 溫度感測器電流控制振盪器三角積分調變時間數位轉換器電壓相位轉換器低功耗
外文關鍵詞: Temperature sensor, current-control oscillator, delta sigma modulator, time to digital converter, time to digital converter, low power
相關次數: 點閱:65下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個基於環形振盪器的溫度感測架構和三角積分調變時間數位轉換器架構。
    溫度感測器可以分為前端溫度感測電路和後端的讀出電路。電流控制振盪器(CCO) 作為溫度感測器前端的溫度感測電路,透過金氧半場效電晶體(MOS) 操作於次臨界區時對於溫度的特性,產生與溫度相關的電壓〖 V〗_CCO。並且利用回授網絡調節CCO的電流,使CCO能夠輸出穩定的時脈。其頻率不受到溫度影響,並且能夠供應給後級取樣電路做使用,同時運用開關式電阻的技巧縮小晶片面積;溫度感測器後端則是以充電幫浦作為第一級積分器;離散式開關式電容積分器作為第二級積分器的三角積分調變時間數位轉換器(DSM TDC),TDC將溫度訊號V_CCO轉換為數位訊號。利用電壓時間轉換器(VTC)將電壓溫度訊號V_CCO轉換為時間溫度訊號∅_CCO。之後∅_CCO進行三角調變並透過時間數位轉換器產生相對應的數位訊號。
    此論文使用台積電180 nm的互補式金屬氧化物半導體製程實現所提出之架構。佈局模擬輸入頻寬為250 Hz,取樣頻率為32 kHz,在超取樣比率為64的情況下,能夠達到解析度10.25 bits,解析度為0.08 ℃/LSB。晶片在-20 ℃~80 ℃量測中,溫度感測器工作於0.8 V,其功率消耗為1100 nW。溫度感測器輸出電壓VCCO能產生1.3 mV/℃的敏感度,振盪器頻率穩定度為2%在100 ℃的溫度範圍內。電壓電源變化400 mV時,頻率變化1.5%~1.2%左右。

    This paper presents a temperature sensor based on a ring oscillator and a ΔΣ modulation time-to-digital converter (TDC). The temperature sensor consists of a front-end temperature sensing circuit and a back-end readout circuit. The front-end temperature sensing circuit employs a current-controlled oscillator (CCO) that operates in the subthreshold region of a metal-oxide-semiconductor (MOS) transistor to generate a temperature-dependent voltage, V_CCO. A feedback network is utilized to regulate the current of the CCO, ensuring a stable clock output. The CCO's frequency is not affected by temperature and can be supplied to the subsequent sampling circuit. The back-end of the temperature sensor employs a charging pump as the first integrator and a discrete-time switched-capacitor integrator as the second integrator in the ΔΣ modulation TDC. The TDC converts the temperature signal, V_CCO, into a digital signal. A voltage-to-time converter (VTC) is used to transform the voltage temperature signal, V_CCO, into a time-domain temperature signal, ∅_CCO. Subsequently, ∅_CCO undergoes triangle modulation and is converted into the corresponding digital signal by the time-to-digital converter.
    The proposed architecture is implemented using a TSMC 180 nm complementary metal-oxide-semiconductor (CMOS) process. Post-layout simulations show that the architecture achieves a resolution of 10.25 bits with a input bandwidth of 250 Hz and a sampling frequency of 32 kHz, under an oversampling ratio of 64. The resolution corresponds to 0.08 ℃/LSB. During temperature measurements from -20 ℃ to 80 ℃, the temperature sensor operates at 0.8 V with a power consumption of 1.1μW. The temperature sensor's output voltage, VCCO, exhibits a sensitivity of 1.3 mV/℃, and the oscillator frequency stability is within 2% over a temperature range of 100 ℃. When the voltage power supply varies by 400 mV, the frequency variation is approximately 1.5% to 1.2%.

    1. Introduction 1 1-1. Motivation 1 1-2. Temperature Sensor 2 1-3. Thesis Overview 3 2. Literature Review of Temperature Sensor 4 2-1. Performance Metrics of Temperature Sensor 4 A. Temperature Range 4 B. Resolution 5 C. Accuracy 5 D. Area 6 E. Power 6 F. Figure of Merit (FoM) 6 G. Specification 7 2-2. Overview of Temperature Sensor Types and Architectures 8 A. BJT-Based Temperature Sensor 8 B. Resistor-Based Temperature Sensor 12 C. CMOS-based Temperature Sensor 20 2-3. Overview of Analog to Digital Converters 34 A. Theoretical Foundations of Analog-to-Digital Converters 34 3. Temperature Sensing Circuits 44 3-1. Architecture of Proposed Sensor 44 3-2. Circuit Implementation 49 A. Ring Oscillator 49 B. Feedback Network 53 C. Switched-Resistor Technique 59 D. Level Shifter 60 3-3. Simulation Results 63 A. Voltage versus Temperature 63 B. Frequency versus Temperature 64 C. Supply Voltage Variation 65 D. Comparison table Pre-sim and Post-sim 66 E. Layout 66 3-4. Measurement Setup and Results 68 A. Measurement Setup 68 B. Measurement Results 69 4. A Reference-Less Ring Oscillator-Based CMOS Temperature Sensor With Second Order Noise Shaping 72 4-1. Architecture of Proposed Sensor 74 4-2. Architecture of Proposed Modulator 76 A. Modulator Architecture Analysis 76 B. Coefficient selection 78 C. Effects of noise at different nodes on Delta-Sigma modulator 81 D. Switched-Capacitor Integrator 83 4-3. Circuit Implementation 93 A. Voltage to Time Converter 93 B. Delta Generation 97 C. Phase Frequency Detector 100 D. Charge Pump 102 E. OP 104 F. Comparator 106 G. Clock Generator 108 4-4. Simulation Results 109 A. Chip Photo 109 B. Resolution 110 C. Accuracy 111 D. Power Consumption 113 5. Measurement Results 114 5-1. Measurement Setup 114 5-2. Measurement Results 115 A. Sensing Circuits 115 B. Readout Circuits 119 5-3. Problem Discussion 124 A. Frequency Variation 124 B. SNR Degradation 127 5-4. Comparation Table 134 6. Conclusion 135 6-1. Conclusion and Performance Landscape 135 6-2. Future Research Directions 136 Reference 137

    [1] B. Yousefzadeh, S.H. Shalmany, and K.A.A. Makinwa, A BJT-Based Temperature-to-Digital Converter With ±60 mK ( 3σ ) Inaccuracy From −55 °C to +125 °C in 0.16-μm CMOS. IEEE Journal of Solid-State Circuits, 2017. 52(4): p. 1044-1052.
    [2] M.A.P. Pertijs, K.A.A. Makinwa, and J.H. Huijsing, A CMOS smart temperature sensor with a 3σ inaccuracy of ± 0.1°C from -55°C to 125°C. IEEE Journal of Solid-State Circuits, 2005. 40(12): p. 2805-2815.
    [3] M. Shahmohammadi, K. Souri, and K.A.A. Makinwa. A resistor-based temperature sensor for MEMS frequency references. in 2013 Proceedings of the ESSCIRC (ESSCIRC). 2013.
    [4] C. H. Weng, C.K. Wu, and T.H. Lin, A CMOS Thermistor-Embedded Continuous-Time Delta-Sigma Temperature Sensor With a Resolution FoM of 0.65 pJ°C^2. IEEE Journal of Solid-State Circuits, 2015. 50: p. 2491-2500.
    [5] S. Pan, K.A.A. Makinwa, A 0.25 mm2-Resistor-Based Temperature Sensor With an Inaccuracy of 0.12 °C (3 σ ) From −55 °C to 125 °C. IEEE Journal of Solid-State Circuits, 2018. 53(12): p. 3347-3355.
    [6] C.P.L.v. Vroonhoven, D. d'Aquino, and K.A.A. Makinwa. A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ±0.2°c (3s) from −55°c to 125°c. in 2010 IEEE International Solid-State Circuits Conference - (ISSCC). 2010.
    [7] S. Park, et al. A DTMOST-based Temperature Sensor with 3σ Inaccuracy of ±0.9°C for Self-Refresh Control in 28nm Mobile DRAM. in 2020 IEEE Custom Integrated Circuits Conference (CICC). 2020.
    [8] C. Chun-Chi, et al. An accurate CMOS time-to-digital-converter-based smart temperature sensor with negative thermal coefficient. in SENSORS, 2005 IEEE. 2005.
    [9] W.Song, et al., An Ultralow Power Time-Domain Temperature Sensor With Time-Domain Delta–Sigma TDC. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017. 64(10): p. 1117-1121.
    [10] T. Anand, K.A.A. Makinwa, and P.K. Hanumolu, A VCO Based Highly Digital Temperature Sensor With 0.034 °C/mV Supply Sensitivity. IEEE Journal of Solid-State Circuits, 2016. 51(11): p. 2651-2663.
    [11] Y.L. Lo, Y.T. Chiu, "A High-Accuracy, High-Resolution, and Low-Cost All-Digital Temperature Sensor Using a Voltage Compensation Ring Oscillator, " IEEE Sensors Journal, 2016. 16(1): p. 43-52.
    [12] Y. Chen, et al., "A +0.66/−0.73 °C Inaccuracy, 1.99-μW Time-Domain CMOS Temperature Sensor With Second-Order ΔΣ Modulator and On-Chip Reference Clock, " IEEE Transactions on Circuits and Systems I: Regular Papers, 2020. 67(11): p. 3815-3827.
    [13] S.M.K.a.Y. Leblebici, "MOS inverters: Dynamic characteristics, "1996.
    [14] W. Kester, "Which ADC Architecture Is Right for Your Application? , " 2005.
    [15] C.E. Shannon, "Communication in the Presence of Noise, "Proceedings of the IRE, 1949. 37(1): p. 10-21.
    [16] J.A.C.W.M. Snelgrove, "Continuous-Time Delta-Sigma Modulators For High-Speed A/D Conversion, "2002.
    [17] F.M.H. Rocio Rio Fernandez, "CMOS Cascade Sigma-Delta Modulators For Sensors and Telecom, "2006.
    [18] F. Gerfers, M.O. , "Continuous-Time Sigma-Delta A/D Conversion, Springer Berlin, Heidelberg, "2006.
    [19] J.M.d.l. Rosa, "Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey," IEEE Transactions on Circuits and Systems I: Regular Papers, 2011. 58(1): p. 1-21.
    [20] J. G. Chen, "A Low Power Reference-Less Ring Oscillator-Based CMOS Temperature Sensor With 1-Bit Noise Shaping ΔΣ TDC, "in Department of Electrical Engineering Naional Cheng Kung University. "2022
    [21] T.Jang, et al. 5.8, "A 4.7nW 13.8ppm/°C self-biased wakeup timer using a switched-resistor scheme, " in 2016 IEEE International Solid-State Circuits Conference (ISSCC). 2016.
    [22] J. Jose, K. Nair, and A. Ravindran, "Analysis of Temperature Effect on MOSFET Parameter using MATLAB, "IJEDR, 2016. 4.
    [23] E.Leelarasmee, "A Cmos Current Controlled Ring Oscillator With Wide and Linear Tuning Range, "2011.
    [24] S.C. Luo, C.J. Huang, and Y.H. Chu, "A Wide-Range Level Shifter Using a Modified Wilson Current Mirror Hybrid Buffer, "IEEE Transactions on Circuits and Systems I: Regular Papers, 2014. 61(6): p. 1656-1665.
    [25] S. Lütkemeier, U. Rückert, "A Subthreshold to Above-Threshold Level Shifter Comprising a Wilson Current Mirror, " IEEE Transactions on Circuits and Systems II: Express Briefs, 2010. 57(9): p. 721-724.
    [26] M.A.P. Pertijs, J. Huijsing, "Precision Temperature Sensors in CMOS Technology, "2006: Springer Netherlands.
    [27] K.B. Klaassen, "Digitally Controlled Absolute Voltage Division, " IEEE Transactions on Instrumentation and Measurement, 1975. 24: p. 106-112.
    [28] https://www.mathworks.com/matlabcentral/fileexchange/19-delta-sigma-toolbox.
    [29] P.R. Gray, D. Senderowicz, and D.G. Messerschmitt, "A low-noise chopper-stabilized differential switched-capacitor filtering technique, " IEEE Journal of Solid-State Circuits, 1981. 16(6): p. 708-715.
    [30] C.C. Enz, E.A. Vittoz, and F. Krummenacher, "A CMOS chopper amplifier, " IEEE Journal of Solid-State Circuits, 1987. 22(3): p. 335-342.
    [31] Y. Lyu, F. Tavernier, "A 4-GS/s 39.9-dB SNDR 11.7-mW Hybrid Voltage-Time Two-Step ADC With Feedforward Ring Oscillator-Based TDCs, " IEEE Journal of Solid-State Circuits, 2020. 55(7): p. 1807-1818.
    [32] D.W. Jee, et al, "A 2 GHz fractional-N digital PLL with 1b noise shaping ΔΣ TDC, " in 2011 Symposium on VLSI Circuits - Digest of Technical Papers. 2011.
    [33] D.W. Jee, et al. , "A 2 GHz Fractional-N Digital PLL with 1b Noise Shaping ΔΣ TDC, " IEEE Journal of Solid-State Circuits, 2012. 47(4): p. 875-883.
    [34] J.-S. Lee, et al. , "Charge pump with perfect current matching characteristics in phase-locked loops, " Electronics Letters, 2000. 36: p. 1907-1908.
    [35] T.H. Lin, C.L. Ti, and Y.H. Liu, "Dynamic Current-Matching Charge Pump and Gated-Offset Linearization Technique for Delta-Sigma Fractional-N PLLs, " IEEE Transactions on Circuits and Systems I: Regular Papers, 2009. 56(5): p. 877-885.
    [36] M.v. Elzakker, et al. , "A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s, " IEEE Journal of Solid-State Circuits, 2010. 45(5): p. 1007-1015.
    [37] P.H.P. Wang, et al. , "A Near-Zero-Power Wake-Up Receiver Achieving −69-dBm Sensitivity, " IEEE Journal of Solid-State Circuits, 2018. 53(6): p. 1640-1652.
    [38] C.Y. Ku, and T.T. Liu, "A Voltage-Scalable Low-Power All-Digital Temperature Sensor for On-Chip Thermal Monitoring, " IEEE Transactions on Circuits and Systems II: Express Briefs, 2019. 66(10): p. 1658-1662.
    [39] Z. Tang, , et al. , "A 1770-μm2 Leakage-Based Digital Temperature Sensor With Supply Sensitivity Suppression in 55-nm CMOS, " IEEE Journal of Solid-State Circuits, 2020. 55(3): p. 781-793.
    [40] T. Someya, et al. , "An 11-nW CMOS Temperature-to-Digital Converter Utilizing Sub-Threshold Current at Sub-Thermal Drain Voltage, " IEEE Journal of Solid-State Circuits, 2019. 54(3): p. 613-622.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE