| 研究生: |
李英華 Lee, Ying-Hua |
|---|---|
| 論文名稱: |
摻雜改質/未改質多壁奈米碳管之
扭轉向列型液晶盒的光電響應研究 The electro-optical responses of twisted nematic liquid crystal cell blended with modified and non-modified MWCNTs |
| 指導教授: |
陳志勇
CHEN, Chuh-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 奈米碳管 、液晶 、扭轉向列型 、電漿改質 |
| 外文關鍵詞: | Carbon nanotube(CNT), Liquid crystal, Twinst nematic, Plasma modified |
| 相關次數: | 點閱:100 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的主要探討未改質奈米碳管與已改質奈米碳管在扭轉向列型(twisted nematic)液晶於不同濃度下所造成的光電響應變化。本文藉由電漿改質方法,將奈米碳管接上馬來酸酐,接著合成schiff bass小分子液晶接在馬來酸酐上為最終改質奈米碳管。
本研究自行合成的schiff base小分子液晶(C1C6),以DSC、NMR及POM等多項儀器鑑定,確認所合成的小分子液晶為Nematic的液晶相態。利用電漿改質奈米碳管將馬來酸酐(MA)接枝在碳管表面,再經由酯化反應將C1C6接枝在奈米碳管上。經由拉曼光譜與ESCA等儀器確認分析後,MA與C1C6確實成功接枝在奈米碳管上。
在光電響應之應用上,本文利用液晶量測參數儀(liquid crystal analysis system ,LCAS)分析混摻入奈米碳管後的液晶混合物在介電異相性(dielectric anisotropy)液晶旋轉黏度(rotational viscosity)的性質變化。結果顯示混摻入改質碳管時,液晶內部離子濃度可由9.71×1013 Ions/cm3降至1.24×1013 Ions/cm3 (0.05% wt);而未改質添加碳管時,離子濃度降至3.71×1013 Ions/cm3。此結果說明了添加改質後碳管於液晶中,可減少離子效應(ions effect)。最後,在液晶的反應速度表現上,未摻入碳管之純液晶在外加5V電壓下,上升時間為75.08ms,當加入0.05wt%未改質碳管後,上升時間下降至39.13ms,如混摻入已改質碳管0.05wt%下降時間下降至26.48ms,改善幅度達64.7%之多。
We investigated the electro-optical responses of twisted nematic liquid crystal cell blended modified and non-modified multi-walls carbon nanotubes(MWNTs) at different concentrations. Preparation of carbon nanotubes by using plasma method, MWNTs grafted maleic anhydride(MA),followed by synthesis of schiff base liquid crystal (C1C6) to MA has been modified for the final MWNTs(CNT-C1C6).
We identified the schiff base liquid crystal(C1C6) with DSC、NMR and POM equipment, and we can confirm C1C6 has nematic phase. MA grafted onto MWNTs by plasma method (CNT-MA), and C1C6 grafted onto CNT-MA by esterification reaction. The experiment instruments such as Raman spectroscopy and ESCA confirmed MA and C1C6 grafted on the MWNTs successfully.
Experimental results show that the liquid crystal instrument (liquid crystal analysis system, LCAS) measured parameters found that the carbon nanotubes doped liquid crystal after the dielectric anisotropy and the rotational viscosity have been improved. The ions concentration of Chi Mei liquid crystal is 9.71 × 1013 Ions/cm3.When Chi Mei liquid crystal doped the modified MWNTs, the ions concentration decreased to 1.24 × 1013 Ions/cm3 (0.05wt%),but the ions concentration lowered to 3.71 × 1013 Ions/cm3 (0.05wt%)only when doped the unmodified MWNTs.Hence the modified MWNTs reduced ions effect better than unmodified MTNTs. Chi Mei liquid crystal of the rise time of the response time was 75.08ms in the external 5 voltage, if the twisted nematic cell blended unmodified MTNTs(0.05wt%) of the rise time was 39.13ms.However,the twisted nematic cell blended modified MTNTs(0.05wt%) of the rise time reduced to 26.48ms,to improve the range of up to 64.7%.
1. S. Iijima ,Nature 354, 56, 1991.
2. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J. E. Fischer, and R.E. Salley, Science 273, 483-487, 1996.
3. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Science 306, 1362-1364, 2004
4. J.M. Moon, K.H. An, Y.H. Lee,Y.S. Park, D.J. Bae, and G.S. Park, J. Phys. Chem. B 105, 5677-5681, 2001.
5. S.J. Tans, A.R.M. Verschueren, and C. Dekker, Nature 393, 49-52, 1998
6. T. Rueckes, K. Kim, E. Joselevich,G.Y. Tesng, C.L. Cheung, and C.M. Lieber, Science 289, 94-97, 2000.
7. P.G. Collins, M.S. Arnold, and P. Avouris, Science 292, 706-709, 2001.
8. A.G. Ryabenko, T.V. Dofeeva, and G.I. Zvereva, Carbon 42, 1523-1535, 2004.
9. M.S. Strano,C.A. Dyke, M.L. Usrey, P.w. Barone, M.J. Allen , H. Shan, C. Kittrell, R.H. Hauge, J.M. Tour, and R.E. Smalley, Science 301, 1519-1522, 2003.
10. P.G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University Press, Oxford, 1993).
11. 松本正一、角田市良,《液晶的基礎與應用》,劉瑞祥譯,國立編譯館,民85年。
12. R. A. Soref, Journal of Applied Physics 45, 5466–5468, 1974.
13. S. H. Lee, J. C. Kim, and S. J. Kim, Applied Physics Letters 84, 1465–1467 , 2004.
14. L.Y. Chen and S.H. Chen, Applied Physics Letters 74, 3779–3781, 1999.
15. H. Y. Kim, S. H. Hong, T. K. Park, D. S. Seo, J. M. Rhee, and S. H. Lee, Japanese Journal of Applied Physics 41, 176–181, 2002.
16. W. Kratschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman, Nature 347, 354-358, 1990.
17. S. Iijima , T. Ichihashi, Nature 363,603,1993.
18. A. Hirsch, Angew. Chem. Int. Ed. 2002, 41, 1853.
19. M.S. Dresselhaus, G Dresselhaus, R Satio, Carbon 33, 883-891,1995.
20. W. A. de Heer, Science 270, 1179,1995.
21. Y.I. Prylutskyy ,S.S. Durov,O.V. Ogloblya,E.V. Buzaneva and P. Scharff, Computational Materials Science 17, 352-355,2000.
22. V. N. Popov, Materials Science and Engineering: R 43, 61-102, 2004
23. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T.
Thio, Nature 382, 54, 1996.
24. J. Hone et al., Synthetic Metals 103, 2498, 1999.
25. R.J. Chen, Y. Zhang, D. Wang, and H. Dai,J. Am Chem. Soc. 123, 3838-3839, 2001
26. D.Tasis,N. Tagmatarchis,A.Bianco,and M. Prato,Chem. Rev. 106, 1105-1136, 2006.
27. B. K. Price, J. L. Hudson, and J. M. Tour, Journal of the American Chemical Society 127, 14867 , 2005.
28. E.T. Mickelson,I.W. Chiang,J.L. Zimmerman,P.J. Boul,J.Loano,J. Liu,R.E. Smalley,R.H. Hauge,and J.L. Margrave,J. Phys. Chem.B 103, 4318-4322, 1999.
29. D.-H. Jung, Y. K. Ko,and H.-T. Jung, Materials Science and Engineering C 24 , 117– 121, 2004.
30. B. Olalde, J.M. Aizpurua,A. Garcı´a, I. Bustero, I. Obieta,and M. J. Jurado,J. Phys. Chem. C , 112, 10663–10667, 2008.
31. C.H. Tseng , C.C. Wang ,and C.Y. Chen, Nanotechnology 17, 5602-5612 , 2006.
32. C.H. Tseng , C.C. Wang ,and C.Y. Chen , J. Phys. Chem. B 110, 4020, 2006
33. C.H. Tseng , C.C. Wang ,and C.Y. Chen , J. Nanosci. Nanotechnol. 6, 1, 2006.
34. 中田一郎、堀文一著,賴耿陽譯,液晶製法與應用,23-25, 1997.
35. W. Lee and S.-L. Yeh, Applied Physics Letters 79, 4488–4490, 2001.
36. C. W. Oseen, Trans. Faraday Soc. 29, 883 , 1933.
37. H. Zocher, Trans. Faraday Soc. 29, 945 , 1933.
38. F. C. Frank, Disc. Faraday Soc. 25, 19 , 1958.
39. T. Tsukada, ”TFT/LCD Liquid-Crystal Displays Addressedby Thin-Film-Transistors”, Gordon and Breach Science, Singapore,Chap. 5 ,1996.
40. H. Mada and K. Osajima, Journal of Applied Physics 60, 3111 ,1986.
41. M. Kitamura, Euro Display ’96, 330, 1996.
42. 胡正中、李偉,《含雜質向列型液晶之實驗光譜》,《中原學報》, 29,213–217 ,2001.
43. M.A. Tamor and W.C.Vassel, J. Appl. Phys. 76, 3823-3830, 1994.
44. N.T.McDeutt,R.K.Singh and F.Qian, J.Vac.Sci.Technol.A 14, 431-435, 1966
45. Tsai,D.B.Bogy,M.K.Kundmann,D.K.Veirs,M.R.Hilton and S.T.Mayer, J.Vac.Sci.Technol.A 6, 2307-2315, 1998.
46. H.E.Jackson and R.L.C.Wu, J.Appl.Phys. 7, 2714-2718, 1995.
47. Silvertein, Webster, Kiemle, 〝SPECTROMETRIC INDENTIFICATION OF ORGANIC COMPOUNDS〞,Seventh Edition
48. Q.Wei, S. Zhu,L. Zhang , X. Yuan , H. Cao and H. Yang ,Journal of University of Science and Technology Beijen 14 , 373,2007.
49. R. Basu and G.S. Iannacchione , Applied Physics Letters 93 , 183105, 2008
50. H.Y. Chen and W. Lee , Applied Physics Letters 88 , 222105 , 2006.
51. H.Y. Chen and W. Lee, Applied Physics Letters 90, 033510, 2007.
52. J.S. Hsu, W.J. Chang, C.Y. Hu ,and H.C. Li , Japanese Journal of Applied Physics 48, 020220, 2009.
校內:2020-12-31公開