| 研究生: |
謝秉宏 Hsieh, Bing-Hung |
|---|---|
| 論文名稱: |
混合式氮化鋁鎵/氮化銦鎵和氮化鎵/氮化銦鎵的多重量子井結構對光電元件之研究 GaN Based Solar Cell and Light Emitting Diode with Hybrid AlGaN/InGaN and GaN/InGaN Multiple Quantum Wells |
| 指導教授: |
賴韋志
Lai, Wei-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 氮化鎵 、發光二極體 、太陽能電池 |
| 外文關鍵詞: | GaN, Light emitting diode, Solar cell |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本次論文中,我們主要對於混合式多重量子井結構做探討,透過混和不同鋁含量的短週期量子井結構,觀察其對於發光元件與光伏元件的特性分析。
首先量測基本發光元件特性,透過積分球量測元件的光輸出功率與發光波長,利用公式計算其外部量子效率與效率衰減,本實驗中,在100mA下,其啟動電壓約有0.08V的增加,而其發光效率與一般標準發光元件相比有11.7%的提升。
而太陽能電池部份量測,此部分包含量測不同照光倍率下的元件特性,並使用可外加偏壓的外部量子效率量測系統,量測特定偏壓點下的光波長轉換效率的變化,本次元件在1倍太陽下,其效率具有28.1%的提升。
最後本論文使用台大光電所吳育任教授所製作的模擬軟體來模擬元件在不同偏壓下的能帶與載子分佈,並透過模擬和文獻來分析發光元件與光伏元件所量測的特性,本次實驗結果與分析將於本論文中詳細描述。
In this study, we focused on hybrid multiple quantum wells(MQWs) structure which used in light emitting diodes (LEDs) and solar cells.
The hybrid Al0.1GaN/ InGaN and GaN/ InGaN MQWs structure we named it SCIII. And the hybrid Al0.06GaN/ InGaN and GaN/ InGaN MQWs structure we named it SCII.
First, we compared the optoelectronic of light emitting diodes. At 100mA current injections, the output power were 77.6, 74.5 and 68.6 mW for SCIII, SCII and conventional structure. The efficient of the best LED is SCIII structure, which have 11.7% enhanced.
Then, we measured the different concentrations of Sun to compare the property of solar cells in different structures. We have significantly improved in fill factor (FF%) . The FF% in one Sun were 70.4% , 59.7% and 54.6% for SCIII , SCII and conventional structure .
In the end, we used the numerical simulation by One Dimensional Poisson, Drift-Diffusion, and Schrodinger Solver (1D-DDCC) which development by professor Yuh-Renn Wu. By using the simulation, we according the band diagram and carrier distribution to know the reason that component have better optoelectronic. The more details would be discussed in this thesis.
[1]H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys., Vol. 76, No. 3, pp. 1363-1398, 1994.
[2]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN / GaN / AlGaN-based laser diodes grown on GaN substrates,” Appl. Phys. Lett., Vol. 72, No. 16, pp. 2014-2016, 1998.
[3]M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., Vol. 79, pp. 114-125, 1996.
[4]J. F. Muth, J. H. Lee, I. K. Shmagin, and R. M. Kobas, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements”, Appl. Phys. Lett. 71 (18), 3 November 1997. 12
[5]J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager Ⅲ, E.E. Haller, Hai Lu, and William J. Schaff, “Fermi-level stabilization in group Ⅲ nitrides”, Phys. Rev. B 71, 161201 (R), 2005.
[6]Eun-Hyun Park, Jin Jang, Shalini Gupta, Ian Ferguson, Cheol-Hoi Kim, Soo-Kun Jeon, and Joong-Seo Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett., vol. 93, p.191103, 2008.
[7]Z. H. Feng, Y. D. Qi, Z. D. Lu and Kei May Lau, “GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metal organic vapor-phase epitaxy”, Journal of Crystal Growth , Vol. 272, Issues 1-4, pp.327-332,2004.
[8]Kug-Seung Lee, Eun-Jeong Kang, and Seong-Ju Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., Vol. 93, No. 11, pp.9383-9385, 2003.
[9]J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise,G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett., Vol. 78, No. 22, pp.3379-3381, 2008.
[10]F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature, vol.386, no.6623, pp.351-359, March. 1997.
[11]Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron., vol.15, no.4, pp.1066–1072, Aug. 2009.
[12]Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth., vol. 312, no.8, pp.1311-1315, Oct. 2010.
[13]Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett., vol. 98, no.15, pp.151102-1–151102-3, April. 2011
[14]C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95eV band gap,” Appl. Phys. Lett., vol.93, no.14, pp.143502-1–1143502-3, Oct. 2008.
[15]R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved conversion efficiency of GaN/InGaN thin-film solar cells,” IEEE Electron Device Lett., vol.30, no.7, pp.724–726, July. 2009.
[16]C. C. Yang, J. K. Sheu, Xin-Wei. Liang, Min-Shun. Huang, M. L. Lee, K. H. Chang, S. J. Tu, Feng-Wen. Huang, and W. C. Lai, “Enhancement of The Conversion Efficiency of GaN-Based Photovoltaic Devices with AlGaN/InGaN Absorption Layers,” Appl. Phys. Lett., vol. 97, no.2, pp.021113-1–021113-3, July. 2010.
[17]J. J. Wierer, Jr., D. D. Koleske, and S. R. Lee, “Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett., vol. 100, no.11, pp.111119-1–111119-3, March. 2012.
[18]J. J. Wierer Jr., A. J. Fischer, and D. D. Koleske, “The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices,” Appl. Phys. Lett., vol.96, no.5, pp.051107-1–051107-3, Feb. 2010.
[19]C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. Denbaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett., vol. 98, no.24, pp.243507-1–243507-3, June. 2011.
[20]S. H. Yen, M. C. Tsai, M. L. Tsai, Y. J. Shen, T. C. Hsu, and Y. K. Kuo, “Effect of N-type AlGaN layer on carrier transportation and efficiency droop of blue InGaN light-emitting diodes,” IEEE Photon. Technol. Lett. 21, 975-977 (2009)
[21]Jih-Yuan Chang, Miao-Chan Tsai, and Yen-Kuang Kuo, “Advantages of blue InGaN light-emitting diodes with AlGaN barriers,” Optics Letters, Vol. 35, No. 9, pp. 1368–1370, 1 May 2010.
[22]Yen-Kuang Kuo, Tsun-Hsin Wang, and Jih-Yuan Chang, "Advantages of blue InGaN light-emitting diodes with InGaN-AlGaN-InGaN barriers ", Appl. Phys. Lett. vol. 100, pp. 031112 (2012).
[23]黃郁心,”氮化鎵/氮化銦鎵多重量子井成長於不同超晶格結構之光特性研究”國立成功大學電機資訊學院電機工程學系光電製程產業研發碩士專班,碩士論文(2007)
[24]C. Y. Hwang, “Growth and Characterization of Gallium Nitride on(0001) sapphire by Plasma Enhanced Atomic Layer Epitaxy and by Low Pressure Metaloganic Chemical Vapor Deposition”, Ph.D. dissertation, Rutgers University, Piscataway, NJ (1995).
[25]S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Luminescences from localized states in InGaN epilayers”, Appl. Phys. Lett. Vol. 70, 21, pp. 2822 (1997).
[26]S.F. Chichibu, A.C. Abare, M. S. Minsky, S. Keller, S. B.Fleischer, J.E.Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sato, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multi quantum well structures” Appl. Phys. Lett. Vol. 73,14, pp. 2006 (1998).
[27]D. Behr, J.Wagner, A.Ramakrishnan, H. Obloh, and K.-H.Bachem, “Evidence for compositional inhomogeneity in low In content(InGa)N obtained by resonant Raman scattering", Appl. Phys. Lett. Vol. 73, 2, pp. 241 (1998).
[28]Y. Narukawa, Y. Kawakami, Sg. Fujita, and S. Nakamura, “Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells ”, Phys. Rev.B Vol.59, pp.10283 (1999).
[29]R. Zheng and T. Taguchi, “Stokes shift in InGaN epitaxial layers”, Appl. Phy. Lett. Vol.77,19, pp.3024 (2000).
[30]G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, “Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy”, Appl. Phys. Lett. Vol. 68,18, pp.2541 (1996).
[31]C. M. Lueng, H. L. W. Chan, C. Surya, and C. L. Choy, “Piezoelectric coefficient of aluminum nitride and gallium nitride”, J. Appl. Phys. Vol. 88,9, 5360 (2000).
[32]T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H.Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells”, Jpn. J. Appl. Phys. Vol. 36, L382, (1997).
[33]施敏-半導體元件物理與製作技術(第二版)
[34]呂彥興,”氧化鋅鎵薄膜成長在氮化鎵發光二極體上之應用”國立成功大學光電科學與工程研究所,碩士論文(2007)
[35]A. Luque and S. Hegedus,“Handbook of Photovoltaic Science and Engineering,”Wiley, England, 2002.
[36]J. Nelson,“The Physics of Solar Cell,”Imperial College Press, Lodon, 2003.
[37]江孟庭, “探討串聯電阻對於氮化銦鎵系列太陽能電池之影響”, 國立成功大學光電科學與工程研究所, 碩士論文, (2011).
[38]黃泯舜, “提升氮化銦鎵太陽能電池轉換效率之研究”, 國立成功大學光電科學與工程研究所, 碩士論文, (2010).
[39]Donald A. Neamen, “Semiconductor Physics & Devices”, Third Edition, Mc Graw Hill, 2003.
[40]紀國鐘, 蘇炎坤, 光電半導體技術手冊, 台萬電子材料與元件協會出版, 2002.
[41]Oriel Sol3A Spectral Match with AM 1.5G spectral correction filter meets IEC, JIS, ASTM Class A requirements to for spectral match.
[42]吳育任, 國立台灣大學電機工程學系副教授. 實驗室網頁與模擬軟體出處. http://yrwu-wk.ee.ntu.edu.tw/.
[43]I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys., vol. 94, pp. 3675–3696, 2003.
[44]J. R. Lang, N. G. Young, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells,” Appl. Phys. Lett., vol. 101, no.18, pp.181105-1–181105-3, Oct. 2012.
[45]C. Y. Lee, C. M. Yeh, Y. T. Liu, C.M. Fan, C. F. Huang, and Y.-R. Wu, “The optimization study of textured a-Si:H solar cells,” J. Renewable and Sustainable Energy., vol.6, no.23, pp.023111-1–023111-3, Oct. 2014.
[46]Ahmed Noemaun, Celine Chan and E. F. Schubert, Absorption coefficient of various semiconducting materials , ECSE (2011).
[47]APSYS by Crosslight Software, Inc. , Burnaby, Canada, (2007) [Online]. Available: http://www.crosslight.com
[48]M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, “A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes,” J. Appl. Phys., vol. 106, pp. 114508-1–114508-4, 2009.
[49]H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett., vol. 96, pp. 211122-1–211122-3, 2010.
[50]N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett., vol. 91, pp. 243506-1–243506-3, 2007.
[51]Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett., vol. 91, pp. 141101-1–141101-3, 2007.
[52]Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, M.-H. Kim, and Y. Park, “Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes, ” Appl. Phys. Lett., vol. 97, pp. 133507-1–133507-3, 2010.
[53]Ahmed Noemaun, Celine Chan and E. F. Schubert, Absorption coefficient of various semiconducting materials, ECSE (2011).
[54]C. C. Yang, J. K. Sheu, C. H. Kuo, M. S. Huang, S. J. Tu, F. W. Huang, M. L. Lee, Yu-Hsiang Yeh, X. W. Liang, and W. C. Lai, “Improved Power Conversion Efficiency of InGaN Photovoltaic Devices Grown on Patterned Sapphire Substrates,” IEEE Electron Device Lett., vol. 32, no.4, pp.536–538, April. 2011.
[55]H. H. Liu, P. R. Chen, G. Y. Lee, and J. I. Chyi, “Efficiency enhancement of InGaN LEDs with an n-type AlGaN/GaN/InGaN current spreading layer,” IEEE Electron Device Lett. 32(10), 1409–1411 (2011).
[56]A. Martı´, L. Cuadra, N. Lo´pez, A. Luque, Intermediate band solar cells: comparison with shockley-read-hall recombination, Semiconductors 38 (2004) 946–949.
[57]D. H. Lien , Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee and J. H. He, “ Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy Lett. 11, 104-109 (2015).
校內:2020-08-13公開