| 研究生: |
黃怡涵 Huang, Yi-Han |
|---|---|
| 論文名稱: |
透過系統性分析泛素特異性胜肽酶二十四的交互作用蛋白質探討其在癌症發展之角色 To study the role of USP24 in cancer formation by systemic screening its interacted proteins |
| 指導教授: |
洪建中
Hung, Jan-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | USP24 、Ku70 、細胞凋亡 |
| 外文關鍵詞: | USP24, apoptosis, Ku70 |
| 相關次數: | 點閱:80 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去報導指出去泛素酶可以透過調節一些重要的生理功能之蛋白質來影響包含細胞週期、細胞凋亡、DNA損壞反應等重要的生理功能而在癌症發展中扮演重要的角色。泛素特異性胜肽酶二十四 (Ubiquitin-specific peptidase 24, USP24) 是去泛素酶的成員之一。過去對於USP24在癌症中的研究很少,而目前一些初步實驗結果發現USP24參與腫瘤形成及轉移。然而,對於USP24影響癌症的詳細機轉仍不清楚,因此我們想要透過了解與USP24交互作用的蛋白質來推論USP24在癌症發展中的角色。本篇研究目標為利用系統性分析找出潛在會與USP24交互作用的蛋白質,並利用生物資訊軟體分析釣到的標的蛋白質來推測出USP24在癌症發展中所可能影響的功能,最後在癌細胞實驗中證實USP24的功能。首先以USP24為餌利用酵母菌雙雜合系統 (yeast two hybrid) 篩選出超過兩百個蛋白質,將與USP24交互作用的蛋白質做功能上分析後發現篩選出的蛋白質參與在許多重要的生理功能,包括腫瘤、細胞週期調控、DNA損壞反應、細胞凋亡、蛋白質降解等,暗示USP24透過與這些蛋白質交互作用而調控重要生理功能,進而影響癌症發展。過去實驗發現當在細胞內過度表現USP24時會增加細胞凋亡,因此我們想要進一步探討USP24在細胞凋亡的重要性。分析從酵母菌雙雜合系統篩到的蛋白質時,發現Ku70在過去報導中指出會藉由調控Bax而參與細胞凋亡,我們進一步利用免疫沉澱法確認USP24和Ku70及Bax間的交互作用,並且發現USP24會穩定Bax蛋白質而造成表現量增加,進而促使細胞走向凋亡。
Deubiquitinating enzymes (DUBs) play a key role in cancer development through modulating cell cycle progression, apoptosis, and the response to DNA damage. Ubiquitin-specific peptidase (USP) 24 is one of DUB members, and rare studies related to USP24 in cancer were studied previously. Recently, we found that USP24 was involved in tumorigenesis and metastasis of cancer. However, it is lack of evidence clarifying which cancer-related proteins are direct interacted with USP24 in the tumorigenic process. In this study, initially, we used USP24 as bait to probe its interacted proteins, and more than 200 proteins were probed. After functional grouping with pathway analysis using MetaCoreTM software, data indicated that these interacted proteins were involved in cancer neoplasms, cell cycle regulation, DNA damage response, lung cancer progression, apoptosis, and protein degradation, implying that USP24 may regulate these pathways through interacting with these proteins thereby affecting cancer progression. To confirm the importance of USP24 in cell survival, we choose one of the pathways, apoptosis, to study further. First, knockdown of USP24 decreased cell death, and overexpression of USP24 increased cellular apoptosis. Second, to study the USP24-mediated apoptotic pathways, several apoptotic related factors were evaluated, such as Ku70, Bax and caspase 3. Knockdown of USP24 decreased Ku70-regulated protein, Bax, through reducing protein stability in a proteasome- dependent manner, suggesting that USP24 stabilizes Bax level, leading to the increase in transportation of Bax to mitochondria for apoptosis. In conclusion, this study uncovers the role of USP24 in cancer progression by systemic screening its interacted proteins.
Amsel, A. D., Rathaus, M., Kronman, N., and Cohen, H. Y. (2008). Regulation of the proapoptotic factor Bax by Ku70-dependent deubiquitylation. Proc Natl Acad Sci U S A 105, 5117-5122.
Aravind, L., and Koonin, E. V. (2000). SAP - a putative DNA-binding motif
involved in chromosomal organization. Trends Biochem Sci 25, 112-114.
Baek, S. H., Park, K. C., Lee, J. I., Kim, K. I., Yoo, Y. J., Tanaka, K., Baker, R. T., and Chung, C. H. (1998). A novel family of ubiquitin-specific proteases in chick skeletal muscle with distinct N- and C-terminal extensions. Biochem J 334 ( Pt 3), 677-684.
Cohen, H. Y., Lavu, S., Bitterman, K. J., Hekking, B., Imahiyerobo, T. A., Miller, C., Frye, R., Ploegh, H., Kessler, B. M., and Sinclair, D. A. (2004). Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13, 627-638.
De Smet, C., Lurquin, C., van der Bruggen, P., De Plaen, E., Brasseur, F., and Boon, T. (1994). Sequence and expression pattern of the human MAGE2 gene. Immunogenetics 39, 121-129.
Driller, L., Wellinger, R. J., Larrivee, M., Kremmer, E., Jaklin, S., and Feldmann, H. M. (2000). A short C-terminal domain of Yku70p is essential for telomere
maintenance. J Biol Chem 275, 24921-24927.
Fodde, R., and Smits, R. (2002). Cancer biology. A matter of dosage. Science 298, 761-763.
Guo, Z., Kanjanapangka, J., Liu, N., Liu, S., Liu, C., Wu, Z., Wang, Y., Loh, T., Kowolik, C., Jamsen, J., Zhou, M., Truong, K., Chen, Y., Zheng, L., and Shen, B. (2012). Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Mol Cell 47, 444-456.
Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674.
Haugarvoll, K., Toft, M., Skipper, L., Heckman, M. G., Crook, J. E., Soto, A., Ross, O. A., Hulihan, M. M., Kachergus, J. M., Sando, S. B., White, L. R., Lynch, T., Gibson, J. M., Uitti, R. J., Wszolek, Z. K., Aasly, J. O., and Farrer, M. J. (2009). Fine-mapping and candidate gene investigation within the PARK10
locus. Eur J Hum Genet 17, 336-343.
Hsiang, Y. H., Hertzberg, R., Hecht, S., and Liu, L. F. (1985). Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260, 14873-14878.
Hsu, T. I., Wang, M. C., Chen, S. Y., Yeh, Y. M., Su, W. C., Chang, W. C., and Hung, J. J. (2012). Sp1 expression regulates lung tumor progression. Oncogene 31, 3973-3988.
Hsu, Y. T., Wolter, K. G., and Youle, R. J. (1997). Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc Natl Acad Sci U S
A 94, 3668-3672.
Jensen, D. E., Proctor, M., Marquis, S. T., Gardner, H. P., Ha, S. I., Chodosh, L. A., Ishov, A. M., Tommerup, N., Vissing, H., Sekido, Y., Minna, J., Borodovsky, A., Schultz, D. C., Wilkinson, K. D., Maul, G. G., Barlev, N., Berger, S. L., Prendergast, G. C., and Rauscher, F. J., 3rd (1998). BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 16, 1097-1112.
Kahyo, T., Nishida, T., and Yasuda, H. (2001). Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 8, 713-718.
Kennedy, R. D., and D'Andrea, A. D. (2005). The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev 19, 2925-2940.
Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239-257.
Kucherlapati, M., Yang, K., Kuraguchi, M., Zhao, J., Lia, M., Heyer, J., Kane, M. F., Fan, K., Russell, R., Brown, A. M., Kneitz, B., Edelmann, W., Kolodner, R. D., Lipkin, M., and Kucherlapati, R. (2002). Haploinsufficiency of Flap endonuclease (Fen1) leads to rapid tumor progression. Proc Natl Acad Sci U S A 99, 9924-9929.
Li, Y., Schrodi, S., Rowland, C., Tacey, K., Catanese, J., and Grupe, A. (2006). Genetic evidence for ubiquitin-specific proteases USP24 and USP40 as candidate genes for late-onset Parkinson disease. Hum Mutat 27, 1017-1023.
Liu, Y., Kao, H. I., and Bambara, R. A. (2004). Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem 73, 589-615.
Lobry, C., Oh, P., and Aifantis, I. (2011). Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think. J Exp Med 208, 1931-1935.
Louvet-Vallee, S. (2000). ERM proteins: from cellular architecture to cell signaling. Biol Cell 92, 305-316.
Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., and Bernards, R. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773-786.
Okubo, S., Hara, F., Tsuchida, Y., Shimotakahara, S., Suzuki, S., Hatanaka, H., Yokoyama, S., Tanaka, H., Yasuda, H., and Shindo, H. (2004). NMR structure of the N-terminal domain of SUMO ligase PIAS1 and its interaction with tumor suppressor p53 and A/T-rich DNA oligomers. J Biol Chem 279, 31455-31461.
Oliveira, S. A., Li, Y. J., Noureddine, M. A., Zuchner, S., Qin, X., Pericak-Vance, M. A., and Vance, J. M. (2005). Identification of risk and age-at-onset genes on chromosome 1p in Parkinson disease. Am J Hum Genet 77, 252-264.
Polotnianka, R. M., Li, J., and Lustig, A. J. (1998). The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr Biol 8, 831-834.
Satija, Y. K., Bhardwaj, A., and Das, S. (2013). A portrayal of E3 ubiquitin ligases and deubiquitylases in cancer. Int J Cancer 133, 2759-2768.
Sawada, M., Sun, W., Hayes, P., Leskov, K., Boothman, D. A., and Matsuyama, S. (2003). Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 5, 320-329.
Scanlan, M. J., Simpson, A. J., and Old, L. J. (2004). The cancer/testis genes: review, standardization, and commentary. Cancer Immun 4, 1. Song, L., and Rape, M. (2008). Reverse the curse--the role of deubiquitination in cell cycle control. Curr Opin Cell Biol 20, 156-163.
Thomas, A., El Rouby, S., Reed, J. C., Krajewski, S., Silber, R., Potmesil, M., and Newcomb, E. W. (1996). Drug-induced apoptosis in B-cell chronic lymphocytic leukemia: relationship between p53 gene mutation and bcl-2/bax proteins in drug resistance. Oncogene 12, 1055-1062.
Wall, M. E., Wani, M. C., Cook, C. E., Palmer, K. H., McPhail, A. T., and Sim, G. A. (1966). Plant Antitumor Agents. I. The Isolation and Structure of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminata1,2. J Am Chem Soc 88, 3888-3890.
Wang, K., Liu, S., Wang, J., Wu, Y., Cai, F., and Song, W. (2014). Transcriptional regulation of human USP24 gene expression by NF-kappa B. J Neurochem 128, 818-828.
Wolter, K. G., Hsu, Y. T., Smith, C. L., Nechushtan, A., Xi, X. G., and Youle, R. J. (1997). Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139, 1281-1292.
Wood, D. E., Thomas, A., Devi, L. A., Berman, Y., Beavis, R. C., Reed, J. C., and Newcomb, E. W. (1998). Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 17, 1069-1078.
Wu, Y. R., Chen, C. M., Chen, Y. C., Chao, C. Y., Ro, L. S., Fung, H. C., Hsiao, Y. C., Hu, F. J., and Lee-Chen, G. J. (2010). Ubiquitin specific proteases USP24 and USP40 and ubiquitin thiolesterase UCHL1 polymorphisms have synergic effect on the risk of Parkinson's disease among Taiwanese. Clin Chim Acta 411, 955-958.
Yuan, J., Luo, K., Zhang, L., Cheville, J. C., and Lou, Z. (2010). USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140, 384-396.
Zaarour, R. F., Chirivino, D., Del Maestro, L., Daviet, L., Atfi, A., Louvard, D., and Arpin, M. (2012). Ezrin ubiquitylation by the E3 ubiquitin ligase, WWP1, and consequent regulation of hepatocyte growth factor receptor activity. PLoS One 7, e37490.
Zhang, L., Lubin, A., Chen, H., Sun, Z., and Gong, F. (2012). The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability. Cell Cycle 11, 4378-4384.
Zhang, L., Nemzow, L., Chen, H., Lubin, A., Rong, X., Sun, Z., Harris, T. K., and Gong, F. (2015). The Deubiquitinating Enzyme USP24 Is a Regulator of the UV Damage Response. Cell Rep 10, 140-147.
Zhang, Z., Zhu, L., Lin, D., Chen, F., Chen, D. J., and Chen, Y. (2001). The three-dimensional structure of the C-terminal DNA-binding domain of human Ku70. J Biol Chem 276, 38231-38236.
校內:2020-08-03公開