簡易檢索 / 詳目顯示

研究生: 方昱叡
Fang, Yu-Jui
論文名稱: 以磁控濺鍍法製作之氧化銦鎵薄膜特性及其元件應用
Investigation of Indium Gallium Oxide Thin Film Fabricated by RF Sputtering System and Their Applications
指導教授: 張守進
Chang, Shoou-Jinn
陳志方
Chen, Jone-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 86
中文關鍵詞: 氧化銦鎵氣體感測器光檢測器薄膜電晶體光電晶體
外文關鍵詞: InGaO, Gas sensor, Photodetector, Thin Film Transistor, Phototransistor
相關次數: 點閱:113下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文採用射頻磁控濺鍍法沉積氧化銦鎵薄膜,並深入探討在不同的
    製程環境下對薄膜特性的影響。同時,還介紹了氧化銦鎵薄膜在氣體感
    測器、光檢測器、薄膜電晶體和光電晶體中的應用,並分析其元件特性。
    首先,我們在不同製程參數下利用磁控濺鍍法沉積氧化銦鎵薄膜。藉
    由結構分析、光學分析、元素分析,觀察在不同的厚度與不同的濺鍍氧
    通量,所造成薄膜之間的差異。在原子力顯微鏡分析中,可以觀察到薄
    膜的粗糙度隨著厚度的增加而跟著增加。另外,濺鍍氧通量越大,粗糙
    度的均方根值也隨之越高。我們使用穿透式電子顯微鏡來確認薄膜電晶
    體的結構,並藉由能量色散X 射線譜分析元素,確認主動層的元素組成
    與我們的靶材一致。在光學分析中可以觀測到,氧化銦鎵薄膜在可見光
    區有高達80%的穿透率,經由換算後,發現氧化銦鎵薄膜的能隙落在4.2
    至4.3eV 之間。 X-射線繞射分析的結果顯示未經退火的氧化銦鎵膜是屬
    於非晶型態的材料。最後,根據X 射線光電子能譜分析的結果可知,隨著濺鍍時氧通量增加,薄膜中的氧空缺會隨之減少。
    在實驗的第二部分,製備了氧化銦鎵氣體感測器。探討了它們對還原性氣體(乙醇、丙酮、異丙醇和甲醇)的響應特性。然而,我們發現感測膜的氧空缺與氣體的響應高度相關,當我們降低濺鍍薄膜時的氧通量,氣體感測的響應會提升。在條件最佳化的氣體感測器對異丙醇具有極高的響應及重複性的量測。最後,經由實驗證實,電導率會受到不同溫度下氧氣的化學吸附影響,而氧化銦鎵對還原性氣體的最佳工作溫度為300˚C。
    另外,我們也研究了在不同氧氣通量製程下的氧化銦鎵薄膜光檢測器。我們發現當氧通量比為0%時,所製備的氧化銦鎵光檢測器為歐姆型光電導感測器,而當氧通量比為2%和4%時,為蕭特基型光檢測器。此外,發現在氧通量比為2%時,製作出最佳化的光檢測器。其開關電流比為~1E + 04,響應為7.20E-05 A / W且紫外光-可見光的響應拒斥比為1420。
    第三部分,藉由二氧化矽作為介電層,製作出氧化銦鎵薄膜晶體。主動層的最佳參數是控制在20nm的厚度且氧通量比為0%的氧化銦鎵薄膜。 而氧化銦鎵薄膜電晶體的最佳的特性參數為:臨界電壓為1.27 V、場效電子遷移率為9.94 cm2 / V.s、開關電流比為4.56E + 04、次臨界擺幅為1.01V / dec。此外,我們將結果延伸至氧化銦鎵光電晶體,利用最佳化的的氧化銦鎵薄膜電晶體在260 nm的紫外光照射下,表現出優異的光學特性。在260 nm的紫外光波長和-2 V的閘極偏壓下,氧化銦鎵光電晶體的響應度為2.49E-2A / W,紫外光-可見光的響應拒斥比為9.1E + 3。接著,我們研究了同質氧化銦鎵介電層的薄膜電晶體,然而每個電晶體的特性參數皆獲得改善,同質氧化銦鎵介電層薄膜電晶體顯示出0.37 V的臨界電壓和47.36cm2 / V.s的場效電子遷移率,開關電流比為1.15E + 05,且次臨界擺幅為0.11 V / dec。

    In this thesis, indium gallium oxide (InGaO) is deposited by RF magnetron sputtering and the properties of films are discussed thoroughly under different processing ambiences. Besides, the applications of InGaO thin films in gas sensors, photodetectors, thin film transistors, and phototransistors are demonstrated. The properties of the devices are also discussed in detail.
    First, we utilized the RF-sputtering system to deposit thin-films with different conditions. The structural, optical, and elemental analyses were demonstrated when we grew the films in the different thicknesses and oxygen partial pressures. In the AFM analysis, it could be observed that the roughness of films increased as the thickness increases. Besides, the large the oxygen partial pressure, the higher the RMS value of roughness. We used the TEM to confirm the structure of TFTs. The EDS analysis showed that the elemental composition of the active layer was consistent with our target. The InGaO thin films demonstrated the highly transparent with the average value of 80% in the visible through transmittance measurement. Moreover, the bandgap of InGaO film was found between 4.2 to 4.3 eV by adopting the Tauc procedure. The result of XRD indicated that the InGaO films were amorphous. The XPS results show that as the oxygen partial pressure increased, the oxygen vacancies decreased.
    In the second part of the experiment, the InGaO gas sensors were fabricated. Their response characteristics toward to reducing gases (ethanol, acetone, IPA, and methanol) were reported. We found out the oxygen vacancies of sensing film are highly related with the response of gas sensor. As we raised the oxygen partial pressure while sputtering, the response of the gas sensing decreased. That is, we could get higher response while the sensing film with larger oxygen vacancies. The sensors exhibited great sensitivity and repeatability toward to IPA. Finally, we have certified that the conductivity would be influenced by chemisorption of oxygen varied with different temperature. The optional operating temperature for reducing gases is found out around 300˚C.
    We investigated of InGaO MSM PDs with different oxygen partial pressures. We discovered that IGO-0% acts as Ohmic-type photodetector, while IGO-2% and IGO-4% acts as Schottky-type photodetector. Furthermore, it was found that the optimization oxygen partial pressure for fabricating photodetector is 2%. The on-off current ratio of IGO-2% was ~1E+04. Aside from the responsivity reached 7.20E-05 A/W and the UV-to-visible rejection ratio was 1420. Moreover, the sensor stayed stable after long time on/off current switching illuminated under 260 nm.
    In the third part, The optimized parameters of InGaO thin film transistor with SiO2 dielectric have been realized. The best features would be presented at the InGaO TFTs of 20 nm thickness active layer with the sputtering oxygen partial pressure controlled at 0%. The optimized parameters of InGaO TFTs showed the threshold voltage of 1.27 V and field-effect mobility of 9.94 cm2/V.s. Besides, the magnitude of on-off current ratio is 4.56E+04 and exhibited the subthreshold swing of 1.01 V/dec. Moreover, we extended our results to applicability of InGaO phototransistors. The optimized InGaO phototransistor performed excellent photo properties while illuminating the UV light of 260 nm. The measured responsivity of the InGaO phototransistors was 2.49E-2 A/W under an UV light wavelength of 260 nm and an applied gate bias of -2 V. The UV-to-visible rejection ratio was 9.1E+3. In addition, we investigated the InGaO dielectric layer TFTs. The performances of each parameter all get improve. The InGaO dielectric TFTs showed the threshold voltage of 0.37 V and field-effect mobility of 47.36 cm2/V.s. As well as the magnitude of on-off current ratio is 1.15E+05 and exhibited the subthreshold swing of 0.11 V/dec.

    摘要 I Abstract IV 致謝 VII Contents VIII Table Captions XI Figure Captions XIII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Background of InGaO Material 2 1.3 Overview of Gas Sensor 3 1.4 Overview of Ultraviolet Photodetectors 4 1.5 Overview of Thin Film Transistor 5 1.6 Organization of This Thesis 6 Chapter 2 Relevant Theory and Experimental Equipment 8 2.1 Theory of Gas Sensor 8 2.1.1 Response of the Gas Sensor 10 2.1.2 Response Time & Recovery Time of the Gas Sensor 10 2.2 Theory of Photodetector 11 2.2.1 Responsivity of the Photodetector 12 2.2.2 Rise Time & Recovery Time of the Photodetector 13 2.2.3 Rejection ratio of the Photodetector 13 2.3 Theory of Thin Film Transistor 14 2.3.1 Field-Effect Mobility (μ) 15 2.3.2 Threshold Voltage (Vth) 16 2.3.3 On/off Current Ratio (Ion/Ioff) 16 2.3.4 Subthreshold Swing (S. S.) 17 2.3.5 Interface Trap Density (Nt) 17 2.4 Experimental Equipment 18 2.4.1 RF Sputtering System 18 2.4.2 Plasma-enhanced Chemical Vapor Deposition (PECVD) 20 2.4.3 Thermal Evaporation 21 2.4.4 Atomic Force Microscopes (AFM) 21 2.4.5 Transmission Electron Microscope (TEM) 22 2.4.6 Energy-Dispersive X-ray Spectroscopy (EDS) 22 2.4.7 Optical Transmittance 23 2.4.8 X-ray Diffraction Analysis (XRD) 24 2.4.9 X-ray Photoelectron Spectroscopy (XPS) 26 2.4.10 Measurement Systems 27 Chapter 3 Characteristics of InGaO Thin Film 28 3.1 Growth of InGaO Thin Film 28 3.2 Structural Characteristics 29 3.2.1 AFM 29 3.2.2 TEM & EDS Analysis 32 3.2.3 Optical Characteristics 35 3.2.4 XRD 38 3.2.5 XPS 38 Chapter 4 Fabrication and Characteristics of InGaO MSM Sensor 41 4.1 Fabrication of InGaO MSM Sensor 41 4.2 Gas Sensor 42 4.2.1 Measurement Setup 42 4.2.2 Characteristics of InGaO Gas Sensor with Different Oxygen Partial Pressures 43 4.2.3 The Summary of InGaO MSM Gas Sensor 54 4.3 Photodetector 55 4.3.1 Characteristics of InGaO Photodetector with Different Partial Pressures 55 4.3.2 The Summary of InGaO MSM Photodetector 61 Chapter 5 Fabrication and Characteristics of InGaO Bottom Gate Thin Film Transistor 62 5.1 Fabrication and Measurement of InGaO Thin Film Transistor 62 5.2 Electrical Properties of the InGaO Thin Film Transistors. 64 5.2.1 Characteristics of Different Active Layer Thicknesses in InGaO Thin-Film Transistors 64 5.2.2 Characteristics of Different Oxygen Partial Pressures in InGaO Thin-Film Transistors 66 5.3 Electrical Properties of the InGaO Phototransistors 71 5.4 Electrical Properties of the InGaO Dielectric TFTs 74 5.5 The Summary of InGaO Thin Film Transistor and Phototransistor 77 Chapter 6 Conclusion and Future Work 78 6.1 Conclusion 78 6.2 Future Work 80 Reference 82  Table Captions Table 2-1. Seven types of crystal systems. 25 Table 3-1. Roughness of the films with different thickness. 30 Table 3-2. Roughness of the films with various process ambience. 31 Table 3-3. Energy bandgap of the samples 37 Table 3-4. XPS analysis of the samples. 40 Table 4-1. The response of gas sensor based on IGO-0%, IGO-2%, and IGO-4%. 45 Table 4-2. The response of IGO-0% in different sensing gas. 46 Table 4-3. The response of IGO-2% in different sensing gas. 48 Table 4-4. Gas-sensing performance of IGO-0% samples exposure to various levels of ethanol and IPA at 300°C. 50 Table 4-5. Gas-sensing performance of IGO-0% samples exposure to ethanol and IPA at different temperature. 53 Table 4-6. I-V characteristics of InGaO photodetectors fabricated under different oxygen partial pressure. 56 Table 4-7. PD rejection ratio with various oxygen partial pressures. 58 Table 4-8. The dynamic sensing property of IGO-0%, IGO-2%, and IGO-4%. 59 Table 5-1. The comparison of the various parameters for the IGO TFTs with different active layer thicknesses. 66 Table 5-2. The comparison of the various parameters for the IGO TFTs with different oxygen partial pressures. 70 Table 5-3. The comparison of the various parameters for the IGO TFTs with different dielectric materials. 76   Figure Captions Fig. 2-1. Schematic diagram of band bending after chemisorption of charged species. 9 Fig. 2-2. Schematic diagrams of reducing gas sensing model. 9 Fig. 2-3. Schematic diagram of transitions in the semiconductor under illumination. 11 Fig. 2-4 Structures of the thin film transistor. 14 Fig. 2-5. The momentum exchange process. 18 Fig. 2-6. Schematic diagram of RF sputtering system. 20 Fig. 2-7. Schematic diagram of RF sputtering system. 20 Fig. 2-8. The X-ray diffraction plot. 24 Fig. 2-9. Seven types of crystal systems. 26 Fig. 3-1. Schematic diagram of InGaO thin film sample. 29 Fig. 3-2. AFM images of InGaO thin film under thickness of (a)10 nm , (b) 20 nm, (c) 30 nm, and (d) 50 nm. 30 Fig. 3-3. AFM images of InGaO thin film under deposition oxygen partial pressures of (a) 0%, (b) 2%, and (c) 4%. 31 Fig. 3-4. (a)(b) Low-magnification TEM images of the InGaO TFT. (c) HR-TEM for InGaO film. (d) SAED pattern for InGaO film. 32 Fig. 3-5. EDS analysis of the InGaO film (In:Ga = 40:60 in molar ratio). 33 Fig. 3-6. (a)(b) Low-magnification TEM images of the InGaO dielectric TFT. (c) HR-TEM for InGaO interface. (d) SAED pattern for dielectric layer InGaO film. 34 Fig. 3-7. EDS analysis of the InGaO film (In:Ga = 10:90 in molar ratio). 35 Fig. 3-8. Transmittances of InGaO thin film under different oxygen partial pressures. 36 Fig. 3-9. Absorption spectrum vs. photon energy of InGaO thin film under different oxygen partial pressures. 37 Fig. 3-10. XRD spectra of the InGaO films as-deposited on quartz substrates. 38 Fig. 3-11 XPS O1s spectra of InGaO thin film with various oxygen partial pressures : (a) 0%, (b) 2%, and (c) 4%. 39 Fig. 4-1. Schematic diagram of InGaO MSM sensor. 42 Fig. 4-2. Schematic of gas sensing measurement system. 43 Fig. 4-3. I-t curve of sensing property for IGO (a) 0%, (b), 2%, and (c) 4% in the 500 ppm concentration of IPA at 300°C, respectively. (d) The response of gas sensor based on IGO-0%, IGO-2%, and IGO-4%. 45 Fig. 4-4. Sensing transient curves of the IGO-0% in different sensing gas. 46 Fig. 4-5. Sensing transient curves of the IGO-2% in different sensing gas. 47 Fig. 4-6. The response transient of the IGO-0% gas sensor under exposure to various levels of ethanol at 300°C. 49 Fig. 4-7. The response transient of the IGO-0% gas sensor under exposure to various levels of IPA at 300°C. 49 Fig. 4-8. The response cycles of the IGO-0% gas sensor under exposure to 1 ppm of ethanol at 300°C. 51 Fig. 4-9. The response cycles of the IGO-0% gas sensor under exposure to 1 ppm of IPA at 300°C. 51 Fig. 4-10. Sensing transient curves of the IGO-0% in 500 ppm ethanol at 200°C. 52 Fig. 4-11. Sensing transient curves of the IGO-0% in 500 ppm IPA at 200°C. 53 Fig. 4-12. I-V characteristics of InGaO MSM photodetectors with various oxygen partial pressures. 56 Fig. 4-13. Responsivity of the InGaO MSM PDs with different oxygen partial pressures. 57 Fig. 4-14. Transient responsivity of the different oxygen ratios InGaO (a) 0% (b) 2% (c) 4% UV photodetectors. 59 Fig. 4-15. The time dependent photo-responsivity of the (a) IGO-0%, (b) IGO-2%, and (c) IGO-4%. 60 Fig. 5-1 Schematic diagram of InGaO TFT 63 Fig. 5-2. ID-VD of InGaO TFTs with active layer thickness of (a) 10 nm, (b) 20 nm, (c) 30 nm, and (d) 50 nm. 64 Fig. 5-3. Transfer characteristics of InGaO TFTs with active layer thickness of (a) 10 nm, (b) 20 nm, (c) 30 nm, and (d) 50 nm. 65 Fig. 5-4. ID-VD curve of InGaO TFTs with 0% oxygen partial pressure. 67 Fig. 5-5. ID-VD curve of InGaO TFTs with 2% oxygen partial pressure. 67 Fig. 5-6. ID-VD curve of InGaO TFTs with 4% oxygen partial pressure. 68 Fig. 5-7. Transfer characteristics of InGaO TFTs with 0% oxygen partial pressure. 68 Fig. 5-8. Transfer characteristics of InGaO TFTs with 2% oxygen partial pressure. 69 Fig. 5-9. Transfer characteristics of InGaO TFTs with 4% oxygen partial pressure. 69 Fig. 5-10. Transfer characteristic of InGaO phototransistor under dark and illumination. 71 Fig. 5-11. ID-VD of InGaO phototransistor measured in dark and under illumination of 260 nm. 72 Fig. 5-12. Photoresponsivity of InGaO phototransistor. 73 Fig. 5- 13. Transient responses of the InGaO phototransistor. 74 Fig. 5-14. ID-VD of InGaO dielectric TFT. 75 Fig. 5-15. Transfer characteristics of InGaO dielectric TFT. 76

    [1] Brattain, Walter H., and John Bardeen. "Surface properties of germanium." The Bell System Technical Journal 32.1 (1953): 1-41.
    [2] Wager, John F. "Transparent electronics." science 300.5623 (2003): 1245-1246.
    [3] Pitcher, Stephanie, et al. "Current/voltage characteristics of a semiconductor metal oxide gas sensor." Sensors and Actuators B: Chemical 93.1-3 (2003): 454-462.
    [4] Mottram, Alexander D., et al. "Quasi two-dimensional dye-sensitized In2O3 phototransistors for ultrahigh responsivity and photosensitivity photodetector applications." ACS applied materials & interfaces 8.7 (2016): 4894-4902.
    [5] Batista, P. D., and M. Mulato. "ZnO extended-gate field-effect transistors as p H sensors." Applied Physics Letters 87.14 (2005): 143508.
    [6] Hwang, Young Hwan, and Byeong-Soo Bae. "Effect of aluminum and gallium doping on the performance of solution-processed indium oxide thin-film transistors." Journal of Display Technology 9.9 (2013): 704-709.
    [7] Kim, Youn Goo, et al. "Effect of strontium addition on stability of zinc-tin-oxide thin-film transistors fabricated by solution process." Journal of Display Technology 10.11 (2014): 939-944.
    [8] Kim, Youn Goo, et al. "Stable and high-performance indium oxide thin-film transistor by Ga doping." IEEE Transactions on Electron Devices 63.3 (2016): 1078-1084.
    [9] Jeong, Sunho, et al. "Impact of metal salt precursor on low-temperature annealed solution-derived Ga-doped In2O3 semiconductor for thin-film transistors." The Journal of Physical Chemistry C 115.23 (2011): 11773-11780.
    [10] Knapp, Caroline E., et al. "The use of combinatorial aerosol-assisted chemical vapour deposition for the formation of gallium-indium-oxide thin films." Journal of Materials Chemistry 21.34 (2011): 12644-12649.
    [11] Sheng, Jiazhen, et al. "Atomic layer deposition of an indium gallium oxide thin film for thin-film transistor applications." ACS applied materials & interfaces 9.28 (2017): 23934-23940.
    [12] Chen, Kuan-Yu, et al. "The effect of oxygen vacancy concentration on indium gallium oxide solar blind photodetector." IEEE Transactions on Electron Devices 65.5 (2018): 1817-1822.
    [13] Zhao, Junliang, Xiao Wei Sun, and Swee Tiam Tan. "Bandgap-engineered Ga-rich GaZnO thin films for UV transparent electronics." IEEE Transactions on Electron Devices 56.12 (2009): 2995-2999.
    [14] Chang, Ting-Hao, et al. "Bandgap-engineered in indium–gallium–oxide ultraviolet phototransistors." IEEE Photonics Technology Letters 27.8 (2015): 915-918.
    [15] Kim, Junghwan, et al. "Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor." NPG Asia Materials 9.3 (2017): e359.
    [16] Wang, Chengiang, et al. "Metal oxide gas sensors: sensitivity and influencing factors." Sensors 10.3 (2010): 2088-2106.
    [17] Weisz, P. B. "Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis." The Journal of Chemical Physics 21.9 (1953): 1531-1538.
    [18] Seiyama, Tetsuro, et al. "A new detector for gaseous components using semiconductive thin films." Analytical Chemistry 34.11 (1962): 1502-1503.
    [19] Kanazawa, Eiichi, et al. "Metal oxide semiconductor N2O sensor for medical use." Sensors and Actuators B: Chemical 77.1-2 (2001): 72-77.
    [20] Liao, Meiyong, et al. "Comprehensive investigation of single crystal diamond deep-ultraviolet detectors." Japanese Journal of Applied Physics 51.9R (2012): 090115.
    [21] Alaie, Z., S. Mohammad Nejad, and M. H. Yousefi. "Recent advances in ultraviolet photodetectors." Materials Science in Semiconductor Processing 29 (2015): 16-55.
    [22] Sang, Liwen, Meiyong Liao, and Masatomo Sumiya. "A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures." Sensors 13.8 (2013): 10482-10518.
    [23] Diffey, Brian L. "Sources and measurement of ultraviolet radiation." Methods 28.1 (2002): 4-13.
    [24] Munoz, E., et al. "III nitrides and UV detection." Journal of Physics: Condensed Matter 13.32 (2001): 7115.
    [25] Nomura, Kenji, et al. "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors." Nature 432.7016 (2004): 488.
    [26] Street, Robert A. "Thin‐film transistors." Advanced Materials 21.20 (2009): 2007-2022.
    [27] Fortunato, Elvira, Pedro Barquinha, and R. Martins. "Oxide semiconductor thin‐film transistors: a review of recent advances." Advanced materials 24.22 (2012): 2945-2986.
    [28] Yabuta, Hisato, et al. "High-mobility thin-film transistor with amorphous In Ga Zn O 4 channel fabricated by room temperature rf-magnetron sputtering." Applied physics letters 89.11 (2006): 112123.
    [29] Yang, Edward S. Microelectronic devices. New York: McGraw-Hill, 1988.
    [30] Schroder, Dieter K. Semiconductor material and device characterization. John Wiley & Sons, 2006.
    [31] Neamen, Donald A. "Semiconductor physics and devices." (1992).
    [32] Van Der Ziel, Aldert. "Noise in solid-state devices and lasers." Proceedings of the IEEE 58.8 (1970): 1178-1206.
    [33] Reynolds, D. C., et al. "Neutral-donor–bound-exciton complexes in ZnO crystals." Physical Review B 57.19 (1998): 12151.
    [34] Monroy, E., et al. "Al x Ga 1− x N: Si Schottky barrier photodiodes with fast response and high detectivity." Applied physics letters 73.15 (1998): 2146-2148.
    [35] Vossen, John L., Werner Kern, and Walter Kern, eds. Thin film processes II. Vol. 2. Gulf Professional Publishing, 1991.
    [36] Bae, Hyeon-seok, et al. "The effect of annealing on amorphous indium gallium zinc oxide thin film transistors." Thin Solid Films 518.22 (2010): 6325-6329.
    [37] Goldstein, Joseph I., et al. Scanning electron microscopy and X-ray microanalysis. Springer, 2017.
    [38] C. Y. Chang and S. M. Sze. ULSI Technology. New York: McGraw-Hill, 1996.
    [39] Hsu, Cheng-Liang, Li-Fan Chang, and Ting-Jen Hsueh. "Light-activated humidity and gas sensing by ZnO nanowires grown on LED at room temperature." Sensors and Actuators B: Chemical 249 (2017): 265-277.
    [40] Ahn, M-W., et al. "Gas sensing properties of defect-controlled ZnO-nanowire gas sensor." Applied physics letters 93.26 (2008): 263103.
    [41] Peng, Silu, et al. "Controlled oxygen vacancies of ZnFe2O4 with superior gas sensing properties prepared via a facile one-step self-catalyzed treatment." Sensors and Actuators B: Chemical (2019).
    [42] Wang, Ye, et al. "Influence of channel layer thickness on the electrical performances of inkjet-printed In-Ga-Zn oxide thin-film transistors." IEEE Transactions on Electron Devices 58.2 (2010): 480-485.

    下載圖示
    2024-07-03公開
    QR CODE