簡易檢索 / 詳目顯示

研究生: 劉建欣
Liou, Jian-Shin
論文名稱: 主鏈含Fluorene與Carbazole之高分子 於奈米環境中的光電性質
The optoelectronic properties of polymers containing Fluorene and Carbazole in nano environment
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 118
中文關鍵詞: 奈米聚芴發光二極體
外文關鍵詞: PLED, Carbazole, Fluorene
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   高分子發光二極體(Polymer Light Emitting Diode, PLED)始於1990年英國劍橋大學Friend等人的研究,發現共軛高分子可做為發光二極體材料,從此開啟了高分子發光二極體的時代。
      聚芴( Polyfluorene),且熱安定、化學穩定性均不錯,且具有很高的螢光量子效率(Fluorescence Quantum Efficience),螢光放射波長涵蓋在400~460 nm(藍光),很適合作為發藍光的結構。但是Polyfluorene光學穩定性不佳,如容易有激發雙體、凝集的現象產生,大大限制其應用性。Polyfluorene的另一個缺點,就是其HOMO能階太低,當以ITO電極為陽極時,電洞注入不易。本研究即致力於改善這些現象。
      Carbazole分子,亦是發藍光的材料,其衍生化合物,因為熱穩定性好,且具有電洞傳遞層和發光層的特性,所以也被廣泛用於PLED上。本研究利用Suzuki Reaction,將Fluorene分子與Carbazole分子聚合成一系列的高分子。導入Carbazole基團之後,可以提高高分子的HOMO能階,使電洞注入較容易。另外,因為反應的位置是Fluorene分子2,7位置與Carbazole分子3,6位置,所以反應後會造成近乎90度的彎曲結構。由於這個特殊的結構,在光激發光時,可以改善高分子的光學熱穩定性。但是在電激發光時,高分子依然會有Excimer的現象,而使發光光色隨驅動電壓而改變。
      Fluorene與Carbazole的9號位置常常被利用來接上不同的側鏈,以改善其溶解度或其他性質,本研究亦分別接上長碳鏈、三級氨基和四級氨基為側基,來觀察其溶解度的變化與其他性質的變化。
    本研究另一個方向,是將高分子與鈉蒙脫土摻混,利用蒙脫土特殊的層狀結構,使高分子與其形成插層型奈米複合材料,用以探討高分子於奈米環境中的發光性質。發現高分子之光激發光性質,在摻混前後性質改變不大,但是在電激發光時,卻能改善高分子凝集的現象,使其在不同驅動電壓下的發光光色較穩定。

      Since the discovery of electroluminescence(EL) in the poly(1,4-phenyl-enevinylene) (PPV) in 1990, EL conjugated polymers have attracted much interest in recent years because of their potential application in large-area flat panel displays.
      In the past decade, fluorene-based conjugated polymers (PFs) have emerged as a very promising class of blue-light emitting materials for use in PLEDs because of their high photoluminescence (PL) and electro- luminescence quantum efficiencies, thermal stability, good solubility, and facile functionalization at the C-9 position of fluorene. However, the application of polyfluorenes in PLEDs has been hampered because of the troublesome formation of a tailed emission band at long wavelengths during device fabrication and operation, leading to both color instability and reduced efficiency.
      In this study, we prepared a series of alternating fluorene/carbazole copolymers and systematically investigated the influences of the carbazole content on photophysical, electrochemical, and electroluminescent properties of the resulting polymers. Cyclic voltammetric studies have shown that the HOMO energy levels of copolymers can be raised by inducing the carbazole content. The copolymers exhibited stable PL spectra independent of annealing. However, their EL spectra showed significant red-shift with increasing operating voltage.
      The polymers were also intercalated into montmorillonite to investigate their physical, electrochemical, and optical properties. We found the nano- composites’s PL spectra are nearly the same as their corresponding polymers. However, annealing of the nanocomposite leads to appearance of new red-shifted peak, which is attributable to excimer formation. The nanocomposite of polyfluorene and montmorillonite shows more voltage- independent EL spectra when fabricated as ITO/PEDOT/Polyfluorene/Al device.

    中文摘要…………………………………………………………………………………Ⅰ 英文摘要…………………………………………………………………………………Ⅱ 誌 謝…………………………………………………………………………………Ⅲ 目 錄…………………………………………………………………………………Ⅳ 流程目錄…………………………………………………………………………………Ⅶ 表目錄……………………………………………………………………………………Ⅷ 圖目錄……………………………………………………………………………………Ⅸ 第一章 緒論 1-1簡介……………………………………………………………………………………1 1-2有機電激發光二極體元件的原理及構造……………………………………………2 1-2-1發光原理……………………………………………………………………………2 1-2-2發光效率……………………………………………………………………………3 1-2-3發光效率……………………………………………………………………………5 1-3有機電激發光二極體未來研究方向…………………………………………………8 1-4研究動機………………………………………………………………………………10 第二章 文獻回顧 2-1共軛高分子發光原理…………………………………………………………………11 2-1-1分子軌域與分子能態間的躍遷……………………………………………………11 2-1-2分子間激發態………………………………………………………………………12 2-2影響螢光的因素………………………………………………………………………14 2-3 Fluorene與Carbazole分子…………………………………………………………15 2-4 研究動機……………………………………………………………………………16 2-5複合材料簡介…………………………………………………………………………17 2-5-1有機-無機複合材料…………………………………………………………………17 2-5-2黏土結構……………………………………………………………………………18 2-5-3陽離子交換能力與速率……………………………………………………………19 2-5-4黏土摻混……………………………………………………………………………20 2-5-5發光高分子與奈米複合材料之應用………………………………………………21 第三章 實驗部份 3-1實驗裝置與設備………………………………………………………………………24 3-2鑑定儀器………………………………………………………………………………24 3-3物性及光電特性測量儀器……………………………………………………………25 3-4藥品及材料……………………………………………………………………………29 3-5合成步驟與結果………………………………………………………………………30 3-5-1單體合成……………………………………………………………………………31 3-5-2高分子合成…………………………………………………………………………32 3-5-3有機蒙脫土之合成…………………………………………………………………34 3-6 聚合反應原理………………………………………………………………………34 3-6-1有機金屬觸媒………………………………………………………………………34 3-6-2 Suzuki Reaction…………………………………………………………………35 3-7 相對量子產率………………………………………………………………………36 3-8 循環伏安法…………………………………………………………………………36 3-9 元件製作……………………………………………………………………………38 3-9-1 ITO導電玻璃的切割與清洗………………………………………………………38 3-9-2 ITO玻璃之蝕刻……………………………………………………………………38 3-9-3高分子發光膜的製作………………………………………………………………39 3-9-4陰極蒸鍍……………………………………………………………………………39 3-9-5元件量測……………………………………………………………………………41 第四章 結果與討論 4-1 單體結構之鑑定……………………………………………………………………43 4-2高分子結構鑑定………………………………………………………………………44 4-3高分子3-D分子結構分析……………………………………………………………44 4-4高分子黏度及分子量的測定…………………………………………………………45 4-5溶解度測試……………………………………………………………………………45 4-6 X-ray繞射光譜圖分析………………………………………………………………46 4-7高分子熱性質分析……………………………………………………………………49 4-7-1熱重分析……………………………………………………………………………50 4-7-2微差式掃描熱卡計…………………………………………………………………52 4-8高分子光學性質………………………………………………………………………53 4-8-1分子結構對光譜圖形的影響………………………………………………………53 4-8-2濃度對放射光譜的影響……………………………………………………………54 4-8-3光學熱穩定性………………………………………………………………………55 4-9高分子插層蒙脫土後的光學性質……………………………………………………57 4-10相對量子效率………………………………………………………………………59 4-11電化學性質探討……………………………………………………………………59 4-11-1未插層前高分子電化學性質探討………………………………………………60 4-11-2插層後高分子電化學性質探討…………………………………………………63 4-12元件性質討論………………………………………………………………………65 4-12-1電流密度(I)-電場(F)-亮度(L)特性……………………………………………65 4-12-2 電激發光光譜……………………………………………………………………66 第五章 結論………………………………………………………………………………68 參考文獻…………………………………………………………………………………116 自述………………………………………………………………………………………108

    (1) C. W. Tang , S. A.Vanslyke, Appl. Phys. Lett., 51, 913 (1987).
    (2) J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Bruns, and A. B. Holmes, Nature, 347, 539 (1990).
    (3) 陳壽安,彭剛勇;光訊雜誌,第95期,P.25,2002年4月.
    (4) 柯崇文, Chemistry, 60, 95 (2002)
    (5) (a) P. W. M. Blom, M. C. J. M. Vissenberg, Materials Science and Engineering, 27, 53 (2000). (b) J.-S. Kim, K. H. H. Peter, C. E. Murphy, N. Baynes, R. H. Friend, Adv. Mater. , 3, 206 (2002).
    (6) Min Zheng, Liming Ding, Zhiqun Lin, and Frank E. Karasz, Macromolecules 2002, 35, 9939-9946
    (7) Juraj Bujda´k, Emily Hackett, and Emmanuel P. Giannelis, Chem. Mater. 2000, 12, 2168-2174
    (8) Tae-Woo Lee, O O. Park, Jang-Joo Kim, Jae-Min Hong, and Young C. Kim, Chem. Mater. 2001, 13, 2217-2222
    (9) D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, Harcourt Brace & Co., 1998, p 357.
    (10) Cimrova, V.; Schmidt, W.; Rulkens, R.; Schulze, M.; Meyer, W.; Neher, D. Adv. Mater. 1996, 8, 585.
    (11) Baur, J. W.; Kim, S.; Balanda, P. B.; Reynolds, J. R.; Rubner, M. F. Adv. Mater. 1998, 10, 1452.
    (12) Ho, P. K. H.; Granstrom, M.; Friend, R. H.; Greenham, N. C. Adv. Mater. 1998, 10, 769.
    (13) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev. 2000, 100, 2537.
    (14) (a) Ferreira, M.; Rubner, M. F. Macromolecules 1995, 28, 7107. (b) Fou, A. C.; Rubner, M. F. Macromolecules 1995, 28, 7115. (c) Fou, A. C.; Onitsuka, O.; Ferreira, M.; Rubner, M. F. J. Appl. Phys. 1996, 79, 7501.
    (15) Bharathan, J.; Yang, Y. Appl. Phys. Lett. 1998, 72, 2660.
    (16) Bao, Z.; Feng, Y.; Dodabalapur, A.; Raju, V. R.; Lovinger, A. J. Chem. Mater. 1997, 9, 1299.
    (17) Chang, S. C.; Bharathan, J.; Yang, Y. Appl. Phys. Lett. 1998, 73, 2561.
    (18) Patil, A. O.; Ikenoue, Y.; Wudl, F.; Heeger, A. J. J. Am. Chem. Soc., 1987, 109, 1858.
    (19) Pickup, P. J. Electroanal. Chem. 1987, 225, 273.
    (20) Shi, S.; Wudl, F. Macromolecules 1990, 23, 2119.
    (21) Wallow, T. I.; Novak, B. M. J. Am. Chem. Soc. 1991, 113, 7411.
    (22) Balanda, P. B.; Ramey, M. B.; Reynolds, J. R. Macromolecules 1999, 32, 3970.
    (23) P. B. Balanda, M. B. Ramey and J. R. Reynolds, Macromolecules, 1999, 32, 3970.
    (24) 馬振基,江金龍,關旭強,吳岱霖,張文吉,工業材料雜誌,185期,P.142,2002
    (25) 吳仁傑,工業材料,125 期,p.115-119,1997
    (26) 劉慧玲,”台東樟原黏土資源之有機黏土備製研究”, 國立成功大學資源工程研究所碩士論文,民國89年.
    (27) 王明光, 環境土壤化學,五南圖書出版,pp183-184, 2000.
    (28) Fukushima, Y. and S. Inagaki, Journal of Inclusion Phenomenology, vol.5, pp.473-482, 1987.
    (29) Lebaron, P. C., W. Zhen and J. P. Thomas, Applied Clay Science, vol.15, pp.11-29, 1999.
    (30) 蔡宗燕, 黏土奈米層狀材料之應用與開發, 成功大學資源工程研究所專題演講內容, 2000.
    (31) S. A. Carter, Appl. Phys. Lett., 71 (9), 1145 ,1997.
    (32) V. Bliznyuk, B. Ruhstaller, P. J. Brock, U. Scherf, S. A. Carter, Adv. Mater., 11, 1257 (1999).
    (33) S. K. Lim, J. W. Kim, I. Chin, Y. K. Kwon, and H. J. Choi, Chem. Mater., 14, 1989,2002.
    (34) M. Eckle, G. Decher, Nano Lett., 1, 45 ,2001.
    (35) T. W. Lee, O. O. Park, J.-J. Kim,, J. M. Hong,Y. C. Kim, Chem. Mater.,13, 2217 ,2001.
    (36) N. S. Cho, D.-H. Hwang, J.-I. Lee, B.-J. Jung, H.-K. Shim, Macromolecules , 35, 1224,2002.
    (37) K. L. Paik, N. S. Baek, H. K. Kim, Macromolecules , 35, 6782,2002.
    (38)楊豐瑜;化工資訊,第三期,P.18,2002.
    (39) N. Miyaura, T. Yanagi, A. Suzuki, Synth. Commun., 11,513(1981).
    (40) N. Miyaura, K. Yamada, H. Suginome, A. Suzuki, J. Am. Chem. Soc., 107,972(1985).
    (41) ‘Palladium-catalyzed cross-coupling reactions of organoboronic acids’, A. R. Martin, Y. Yang, Acta Chem. Scand., 47,221(1993).
    (42) J. F. Rusling, S. L. Suib, Adv. Mater., 6, 922 (1994).
    (43) Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta Polym., 50, 105 (1999).
    (44) 王宗櫚、謝達華、何國賢, “聚合物的合成與鑑定法”, (1995).
    (45) Peter B. Balanda, Michael B. Ramey, and John R. Reynolds, Macromolecules 1999, 32, 3970-3978
    (46) Bin Liu, Wang-Lin Yu, Yee-Hing Lai, and Wei Huang,, Macromolecules 2002, 35, 4975
    (47) Qu-Li Fan and Su Lu, Yee-Hing Lai, Xiao-Yuan Hou and Wei Huang, Macromolecules 2003, 36, 6976-6984
    (48) Balanda, P. B.; Ramey, M. B.; Reynolds, J. R. Macromolecules, 1999, 32, 3970.
    (49) 王明光,土壤環境礦物學,藝軒圖書出版社,p.263,2000.
    (50) Velde, B., Introduction to Clay Minerals, published by Chapman & Hall, London, 1992
    (51) Y. Yang, Q. Pei, J. Appl. Phys., 77, 4807 (1995).
    (52) Chuanjun Xia and Rigoberto C. Advincula, Macromolecules 2001, 34, 5854-5859
    (53) Jianping Lu, Ye Tao, Marie D’iorio, Yuning Li, Jianfu Ding, and Michael Day, Macromolecules, 2004, 37, 2442-2449
    (54) Sposito, G.; Prost, R. Chem. Rev. 1982, 82, 553.
    (55) Juraj Bujda´k, Emily Hackett, and Emmanuel P. Giannelis, Chem. Mater. 2000, 12, 2168-2174
    (56) V. N. Bliznyuk and S. A. Carter, J. C. Scott, G. Kla1rner, R. D. Miller, and D. C. Miller, Macromolecules 1999, 32, 361
    (57) Pei, Q.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416.
    (58) Grice, A. W.; Bradley, D. D. C.; Bemius, M. T.; Inbasekaran, M.; Wu, W. W.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 629.
    (59) Sainova, D.; Miteva, T.; Nothofer, H. G.; Scherf, U.; Glowacki, I.; Ulanski, J.; Fujikawa, H.; Neher, D. Appl. Phys. Lett. 2000, 76, 1810.
    (60) Lee, J.-I.; Klamer, G.; Miller, R. D. Chem. Mater. 1999, 11, 1083.
    (61) K. H. Weinfurtner, H. Fujikawa, S. Tokito, Y. Taga, Appl. Phys. Lett. 2000, 76, 2502.
    (62) Gang Zeng, Wang-Lin Yu, Soo-Jin Chua, and Wei Huang, Macromolecules 2002, 35, 6907-6914
    (63) Xiong Gong, Parameswar K. Iyer, Daniel Moses, Guillermo C. Bazan, Alan J. Hegger, and Steven S. Xiao. Adv. Funct. Mater. 2003, 13, 325
    (64) E. J. W. List, R. Guentner. P. S. de Freitas, U. Scherf, Adv. Mater. 2002, 14, 374.
    (65) Kreyenschmidt, M.; Klaemer, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.; Chen, W. D.; Lee, V. Y.; Scott, J. C.; Miller, R. D. Macromolecules 1998, 31, 1099.
    (66) Kla¨rmer, G.; Davey, M. H.; Chen, W. D.; Scott, J. C.; Miller, R. D. Adv. Mater. 1998, 10, 993.
    (67) Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Mu¨ llen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946.
    (68) Zotti, G.; Zecchin, S.; Schiavon, G.; Berlin, A. Macromolecules, 2001, 34, 3889
    (69) Daire, F.; Bedioui, F.; Dewynck, J.; Bied-Charreton, C. J. Electroanal. Chem. 1986, 205, 309.
    (70) Dunand-Sauthier, M. N. C.; Deronzier, A.; Moutet, J. C.; Tingry, S. J. Chem. Soc., Dalton Trans. 1996, 2503.
    (71) Bin Liu, Wang-Lin Yu, Yee-Hing Lai,and Wei Huang, Macromolecules 2002, 35, 4975-4982
    (72) Charles J. Pouchert, ”The Aldrich Library of Infrared Spectra”,2nd edition.
    (73) Skoog, Holler, Nieman, “Principles of instrumental analysis”, 5th edition, Saunders college publishing, P. 654-656.
    (74)Yoshida, Y.; Nichihara, Y.; Ootake, R.; Fujii, A.; Ozaki, M.; Yoshuno, K.; Kim, H. K.; Baek, N. S.; Choi, S. K. J. Appl. Phys. 2001, 90, 6061.
    (75)黃孝文,”主鏈含孤立電子和電洞傳送性發光團之聚芳香醚的合成與光電性質”, 國立成功大學化學工程研究所博士論文,民國91年.
    (76) (a)Weller, A. Pure Appl. Chem. 1968, 16, 115. (b) Brimage, D. R.; Davidson, R. S. J. Chem. Soc., Chem. Commun. 1971, 1385. (c) Ide, R.; Sakata, Y.; Msiumi, S.; Okada, T.; Mataga, N. J. Chem. Soc., Chem Commun. 1972, 1009.

    下載圖示 校內:2005-07-08公開
    校外:2010-07-08公開
    QR CODE