| 研究生: |
許惠茹 Hsu, Hui-Ju |
|---|---|
| 論文名稱: |
運用無電極式介電泳力原理之微抓取生物粒子器模擬研究 Simulation Study of Bio-particle Trapping with Electrodeless Dielectrophoresis |
| 指導教授: |
蕭飛賓
Hsiao, Fei-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 生物粒子抓取 、介電泳 |
| 外文關鍵詞: | Dielectrophoresis, Bio-particle trapping |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
擁有操控微小粒子,尤其是活細胞的能力,對很多生物學以及醫學的應用是很基本的,這些操控的能力包括隔離或偵測稀少的癌細胞、從稀釋的溶液中聚集細胞、根據細胞特性分離細胞以及抓取且定位單一細胞並加以辨識細胞。因此電學、光學、磁學及力學的方法不僅被廣泛運用在操控細胞的科技上,也被整合到微晶片上用來抓取細胞。本研究的目的在於探討應用介電泳力之原理研發微抓取器。本論文首先搜尋學術界在此方面之研究發現介電泳力廣被接受為細胞分離術之重要機制,而且在分類過程中不會損害供研究之樣品活細胞。在本研究中,藉由CFD-ACE+商用軟體的模擬得知利用低導電度的四角型結構物所產生的無電極式的介電泳力之設計,會將微小粒子抓取在兩結購物中間的區域,使得細胞可以承受不穩定的流場作用。根據模擬分析的結果,得到結購物的幾何外型尺寸、結構物的間距、兩電極板的距離以及施加電壓對介電泳力的影響,更近一步得到結構物的間距、兩電極板的距離、施加電壓以及微小粒子的粒徑對微晶片抓取微小粒子的能力之影響,藉以得到微抓取粒子晶片設計的準則。此研究結果對使用介電泳來做生物分析的系統有顯著的貢獻並建議未來可進一步研究之方向。
The ability to manipulate particles, especially living cells, is fundamental to many biological and medical applications, including isolation and detection of sparse cancer cells, concentration of cells from dilute suspensions, separation of cells according to specific properties, and trapping and positioning of individual cells for characterization. For these purposes, electric, optical, magnetic, and mechanical forces have been widely used not only as conventional manipulation principles, but also as trapping methods to be integrated in microchip formats. This study is an attempt to research on microfluidic trapping by using Dielectrophoresis (DEP) force. The DEP force as trapping mechanism has the advantage of no risk to the sample. The electrodeless dielectrophoretic trapping is composed of conductless tetragon structures in micro-chip. Cells are trapped between the tetragon structures and held against destabilizing fluid flows by dielectrophoretic forces. We have advanced the design of electrodeless DEP geometries, correlated particle acted by DEP effects with electrical-field distributions determined through computer simulations. Parameters as being analyzed the effect on the magnitude of DEP force include the width, thickness, and convergent theta of the tetragon structure, the separate distance of two electrodes, the spacing between two structures, and the applied voltage. In addition, it is important for our design to comprehend the factors containing the separation distance of two electrodes, the spacing between two structures, the applied voltage, and particle radius, as well as analysis their influence on the trapping ability. The relation of maximum flow velocity in terms of electric field and particle size is verified. The outcomes of this study could have a substantial impact on the development of bio-analytical systems using dielectrophoretic forces.
[1] S. Umehara, Y. Wakamoto, I. Inoue, K. Yasuda. (2003) On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. Biochem. Biophys. Res. Commun. Vol. 305, pp. 534-540.
[2] J. Enger, M. Goks¨or, K. Ramser, P. Hagberg, D. Hanstorp. (2004) Optical tweezers applied to a microfluidic system, Lab on a Chip, Vol. 4, pp. 196-200.
[3] R.A. Flynn, A.L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M.M. Wang, S.C. Esener. (2002) Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers. Sens. Actuators B, Vol. 87, pp. 239-243.
[4] A.L. Birkbeck, R.A. Flynn, M. Ozkan, D.Q. Song, M. Gross, S.C. Esener. (2003) VCSEL arrays as micromanipulators in chip-based biosystems. Biomed. Microdevices, Vol. 5, pp. 47-54.
[5] P.Y. Chiou, A.T. Ohta, M.C. Wu. (2005) Massively parallel manipulation of single cells and microparticles using optical images. Nature. Vol. 436, pp. 370-372.
[6] M.P. MacDonald, G.C. Spalding, K. Dholakia. (2003) Microfluidic sorting in an optical lattice. Nature, Vol. 426, pp. 421-430.
[7] L. Zhu, Q. Zhang, H.H. Feng, S. Ang, F.S. Chau, W.T. Liu. (2004) Filter-based microfluidic device as a platform for immunofluorescent assay of microbial cells. Lab on a Chip, Vol. 4, pp. 337-341.
[8] H. Mohamed, L.D. McCurdy, D.H. Szarowski, S. Duva, J.N. Turner, M. Caggana. (2004) Development of a rare cell fractionation device: application for cancer detection. IEEE Trans. Nanobiosci. Vol. 3, pp. 251-256.
[9] J. Moorthy, D.J. Beebe. (2003) In situ fabricated porous filters for microsystems.
Lab on a Chip, Vol.3, pp. 62-66.
[10] L.R. Huang, E.C. Cox, R.H. Austin, J.C. Sturm. (2004) Continuous particle separation through deterministic lateral displacement. Science, Vol. 304, pp. 987-990.
[11] A. Khademhosseini, J. Yeh, S. Jon, G. Eng, K.Y. Suh, J.A. Burdick, R. Langer. (2004) Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Lab on a Chip, Vol. 4, pp. 425-430.
[12] H. Tani, K. Maehana, T. Kamidate. (2004) Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network. Anal. Chem. Vol. 76, pp. 6693-6697.
[13] A. Revzin, R.G. Tompkins, M. Toner. (2003) Surface engineering with poly(ethylene glycol) photolithography to ereate high-density cell arrays on glass. Langmuir , Vol. 19, pp. 9855-9862.
[14] M. Toner, and D. Irimia. (2005) Blood on a chip. Annu. Rev. Biomed. Eng. Vol. 7, pp. 77-103.
[15] M. Berger, J. Castelino, R. Huang, M. Shah, R.H. Austin. (2001) Design of a microfabricated magnetic cell separator. Electrophoresis,Vol. 22, pp.3883-3892.
[16] H. Lee, A.M. Purdon, R.M. Westervelt. (2004) Manipulation of biological cells using a microelectromagnet matrix. Appl. Phys. Lett. Vol. 85, pp.1063-1065.
[17] V.I. Furdui, D.J. Harrison. (2004)Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems, Lab on a Chip, Vol. 4, pp. 614-618.
[18] P. Grodzinski, J. Yang, R.H. Liu, M.D. Ward. (2003) A modular microfluidic system for cell pre-concentration and genetic sample preparation. Biomed. Microdevices, Vol. 5 , pp. 303-310.
[19] D.W. Inglis, R. Riehn, R.H. Austin, J.C. Sturm. (2004) Continuous microfluidic immunomagnetic cell separation. Appl. Phys. Lett. Vol. 85, pp. 5093-5095.
[20] K.H. Han, A.B. Frazier. (2004) Continuous magnetophoretic separation of blood
cells in microdevice format. J. Appl. Phys. Vol. 96, pp. 5797-5802.
[21] M. Durr, J. Kentsch, T. Muller, T. Schnelle, M. Stelzle. (2003) Microdevices for
manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis, Vol. 24, pp. 722-731.
[22] Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace, X. Xu. (2002) Dielectrophoretic Cell Separation and Gene Expression Profiling on Microelectronic Chip Arrays. Anal. Chem. Vol. 74, pp. 3362-3371.
[23] J. Voldman, M.L. Gray, M. Toner, M.A. Schmidt. (2002) A microfabrication-based dynamic array cytometer. Anal. Chem. Vol. 74, pp. 3984-3990.
[24] F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, K. Itoigawa. (2001) High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis. Electrophoresis, Vol. 22, pp. 283-288.
[25] L. Cui, D. Holmes, H. Morgan. (2001) The dielectrophoretic levitation and separation of latex beads in microchips. Electrophoresis, Vol. 22, pp. 3893-3901.
[26] H. Li, R. Bashir. (2002) A time resolved study of the response of a WO3 gas sensor to NO2 using AC impedance spectroscopy. Sens. Actuators B, Vol. 86, pp. 215-221.
[27] U. Seger, S. Gawad, R. Johann, A. Bertsch, P. Renaud. (2004) Cell immersion
and cell dipping in microfluidic devices. Lab on a Chip. Vol. 4, pp. 148-151.
[28] A.R. Minerick, R. Zhou, P. Takhistov, H.C. Chang. (2003) Manipulation and characterization of red blood cells with alternating current fields in microdevices. Electrophoresis, Vol. 24, pp. 3703-3717.
[29] M.A. Witek, S.Y. Wei, B. Vaidya, A.A. Adams, L. Zhu, W. Stryjewski, R.L. McCarley, S.A. Soper. (2004) Cell transport via electromigration in polymer-based microfluidic devices. Lab on a Chip, Vol. 4, pp. 464-472.
[30] J.J. Hawkes, R.W. Barber, D.R. Emersonb, W.T. Coakley. (2004) Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel. Lab on a Chip, Vol. 4, pp. 446-452.
[31] M. Yoshida, K. Tohda, M. Gratzl. (2003) Hydrodynamic Micromanipulation of Individual Cells onto Patterned Attachment Sites on Biomicroelectromechanical System Chips. Anal. Chem. Vol. 75, pp. 4686-4690.
[32] H. M. Shapiro. Practical Flow Cytometry. (1988) New York: Alan R. Liss.
[33] S. Chu, “ Laser manipulation of atoms and particles, “ (1991) Science, Vol. 253, pp. 861-866
[34] T. Lea, J. P. O’Connell, K. Nustad, S. Funderud, A. Berge, and A. (1990)
Rembaum, “Microspheres as immunoreagents for cell identification and cell fractionation,” in Flow Cytometry and Sorting, M. R. Melamed, T. Lidmo, and M.L. Mendelsohn, Eds. New Uork: Wiley-Liss
[35] Huang, Y., and R. Pethig. (1991) Electrode design for negative dielectophoresis.
Meas. Science Technology. Vol. 2, pp. 1142-1146
[36] Marszalek, P., J. J. Zielinski, and M. Fikus. (1989) Experimental verification of a
theoretical treatment of the mechanism of dielectrophoresis. Bioelectrochem. Bioenerg. Vol. 22, pp289-298
[37] Pohl, H. and K. Pollock. (1978). Electrode geometries for various dielectrophoretic force laws. J. Electrostatics. Vol. 5, pp. 337-342
[38] Pethig, R., Y. Huang, X. B. Wang, and J. P. H. Burt. (1992) Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes. J. Phys. D: Appl. Phys. Vol. 24, pp881-888
[39] Gray, D. S., J. L. Tan, J. Voldman, and C. S. Chen. (2004) Dielectrophoretic registration of living cells to a microelectrode array. Biosens. Bioelectron. Vol. 19, pp. 771–780.
[40] Wang, X., Hughes, M.PP., Huang, Y., Becker, F., Gascoyne, PP.R.C. (1995) Non-uniform spatial distributions of both the magnitude and phase of AC electric fields determin dielectrophoretic forces. Biochimica et Biophysica Acta, Vol, 1243, pp. 185-194.
[41] Washizu, M., and O. Kurosawa. (1990) Electrostatic manipulation of DNA.
[42] P. Singh, and N. Aubry. (2005) Trapping force on a finite-sized particle in a dielectrophoretic cage. Phys. Review E, Vol. 72, pp. 016602-1-5
[43] Adam Rosenthal and Joel Voldman. (2005) Dielectrophoretic traps for single-particle patterning. Biophys. J., Vol. 88, pp. 2193-2205
[44] W. Michael Arnold, Senior Member. (2001) Positioning and levitation media for the separation of biological cells. IEEE Trans. Ind. Appl., Vol. 37, pp. 1468-1475
[45] G. H. Markx, Y. Huang, X. F. Zhou.(1994) Dielectrophoretic characterization and separation of micro-organisms, Microbiology, Vol. 140, pp. 585-591
[46] Gascoyne, P. R. C., J. Noshari, F. F. Brecker, and R. Pethig. (1994) Use of dielectrophoretic collection speatra for characterizing differences between normal and cancerous cells. IEEE Trans. Appl. Vol. 30, p. 829-834
[47] Talary, M., K. I. Mills, T. Hoy, A. K. Burnett, and R. Pethig.(1995) Dielectrophoretic separation and enrichment of CD34+ cell subpopulation from bone marrow and peripheral blood stem cells. Med. Biol. Eng. Comp, Vol. 33, pp. 235-237
[48] M. Washizu, T. Nanba, S. Masuda. (1990) Handling biological cells using a fluid integrated circuit, IEEE Trans. Ind. Appl., Vol. 26, pp. 352-356
[49] Muller, T., G. Gradl, S. Howitz, S. Shirley, T. Schnelle, and G. Fuhr. (1999) A 3-D microelectrode system for handling and caging single cells and particles. Biosens. Bioelectron. Vol. 14, pp. 247-256
[50] Asbury, C. L., and G. van den Engh. (1998) Trapping of DNA in nonuniform oscillating electric fields. Biophys. J., Vol. 74, pp. 1024-1030
[51] Chia-Fu Chou, Jonas O. Tegenfeldt, Olgica Bakajun, Shirley S. Chan, Edward C. Cox, Nicholas Darnton, Thomas Duke, and Robert H. Austin.(2002) electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys. J., Vol. 83, pp. 2170-2179
[52] Adam Rosenthal and Joel Voldman (2005). Dielectrophoretic traps for single-particle patterning. Biophysical Journal, Vol. 88, pp. 2193-2205.
[53] Pohl, H.A. (1978). Dielectrophoresis. Combridge University Press.
[54] Wang, X., Wang, XB., Bechker, and F., Gascoyne, P. (1998) A theoretical method of electrical field analysis for Dielectrophoretic electrode arrays using Green’s theorem. Journal of Physics. D: Appl. Phys., Vol. 29, pp. 1649-1660
[55] Goldman, A., Cox, and H. Brenner. (1967) Slow viscous motion of a sphere parallel to a plane wall. Ⅱ. Couette flow. Chem. Eng. Sci., Vol. 22, pp. 653-660
[56] Deen, W. M. (1998) Analysis of transport phenomena. Oxford University Press, New York.
[57] Cherukat, P. and J. B. McLaughlin. (1994) The inertial lift on a rigid sphere in a linear shear-flow field near a flat wall. J. Fluid Mech. Vol. 263, pp. 1-18
[58] Leighton, D. and A. Acrivos. (1985) The lift on a small sphere touching a plane in the presence of a simple shear flow. Journal of Applied Mathematics and Physics, Vol. 36, pp. 174-178
[59] Altomare, L., Borgatti, M., Medoro, G., Manaresi, N., Tartagni, M., Guerrieri, R., and Gambari, R. (2003) Levitation and movement of human tumor cells using a printed circuit board device based on software-controlled dielectrophoresis. Biotechnology and Bioengineering, Vol. 82, pp. 474-479.
[60] Durr, M., Kentsch, J., Muller. T., Schnelle, T., and Steizle, M. (2003) Microdevices for manipulation and accumlation of micro-and nanoparticles by Dielectrophoresis. Electrophoresis, Vol. 24, pp. 722-731.
[61] Holmes, D., Green N.G., and Morgan, H. (2003) Microdevices for Dielectrophoretic flow-through cell separation. IEEE Engineering in Medicine and Biology Magazine, Nov. /Dec., pp. 85-90.
[62] Green, N.G., Morgan, H. (1997) Dielectrophoretic separation of nano-parrticle. Journal of Physics D: Appl. Phys. Vol. 30, pp. L41-L44
[63] Pethig, R., markx, G..H. (1997). Applications of Dielectrophoresis in biotechnology. TibTech, Vol. 15, pp. 426-432.
[64] Green, N. G., and H. Morgan. (1997) Dielectrophoretic investigations of submicrometre latex spheres. J. Phys. D: Appl. Phys. Vol. 30, pp. 2626-2633.
[65] Green, N. G., and H. Morgan. (1999) Dielectrophoresis of sub-micrometre latex spheres. Part I: experimental results. J. Phys. Chem. B. Vol. 103, pp. 41-50.