| 研究生: |
蕭瑋廷 Hsiao, Wei-Ting |
|---|---|
| 論文名稱: |
DFA一體化流程:機械手臂輔助金屬彎折工法應用於數位離散設計 DFA Integration Workflow:Roboto–Aided Rod Bending Construction Apply to Discrete Design |
| 指導教授: |
沈揚庭
Shen, Yang-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 自動化 、離散設計 、機械手臂 、金屬彎折 、設計為建造 |
| 外文關鍵詞: | Automation, Discrete Design, Robotic Arm, Metal Rod Bending, Design for Build |
| 相關次數: | 點閱:118 下載:35 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電腦的發明和逐漸普及,數位化(Digitization)深深影響了現代的建築設計和工作流程,以往設計端和製造端彼此脫開,但是隨著數位製造機具如數值控制機械(CNC)的出現,設計為製造(Design for Fabrication)這種相輔相成的迴圈式工作型態也隨之出現。
對於建築的數位轉型而言如果只談論設計為製造似乎略顯不足,因為建築物最終都需要真實地實踐,因此數位化的歷程必須也要能導入到組裝(Assembly)形成「自動化」(Automation)。然而時至今日建築與營造相關產業卻仍然依賴以人力為主的施工與現場放樣來進行其原因在於建築元件與營建過程需要客製化的程度甚高。因此建築的數位轉型勢必要導入自動化的「大量客製化」(Mass Customization)的觀念與技術。
本研究藉由機械手臂偕彎折機發展金屬彎折與自動化組裝工法,從設計端運用離散設計(Discrete Design)生成可調適的零件,再以此聚積(Aggregation)成形式複雜的結構牆體,並在製造端透過參數式軟體分析每根零件的造型,生成相對應的製造參數衍生出機械手臂加工路徑,最後在製造端由機械人作業系統(ROS System)計算每根零件的組裝路徑,將設計、製造、組裝三者串連形成一體化的自動流程。
本研究透過實作逐步探討與印證三階段整合的可行性,同時也發現各階段彼此的連動性,不再只是單向的設計為製造,而是Design-Fabrication-Assembly三者之間形成一種循環,因此在本研究裡將具有這種循環性的設計、製造、組裝一體化工作流程命名為DFA System,並總結成設計為建造(Design for Build)。
With the invention and gradual popularization of computers, digitization has deeply influenced modern architectural design and workflow. In the pass, design and fabrication were previously separated from each other. However, with the emergence of digital fabrication tools such as numeric control machinery(CNC), the notion of "Design for Fabrication" has emerged to change the construction rule.
When "Design for fabrication" is implemented to architecture fields, it seems still to weak to practice due to the missing of construction. Therefore, the complete processing includes assembly stage will be the critical issue. However, the building and construction-related industries still rely on human-based construction because of the highly customizing needs. To solve this problem, the notion and technologies of automatized “Mass Customization”.
This research synchronizes a robotic arm and a bending machine to develop metal the rod bending and automated-assembly methods. There are three stages including design, fabrication, and assembly. In the design stage, the discrete design base on Grasshopper is used to generate adaptable components through aggregated components, they are composed to the complex wall structures. During the fabrication stage, Grasshopper with KUKA|PRC is used to analyze the relationship of components and generate the fabrication path of the robotic arm. Finally, in of the assembly stage, the ROS (Robot Operating System) compiles the assembly path to drive the auto-assembly of robot arm.
This research explores the feasibility of Design-Fabrication-Assembly integration through three practical tectonics experiments. The loop process of Design-Fabrication-Assembly called DFA system is concluded as “Design for Build”.
Keywords : Automation , Discrete Design , Robotic Arm , Metal Rod Bending , Design for Build
中文文獻
1. 沈揚庭*,鄭博仁,李承哲,許佳傑,王彥鈞,李怡瑩,孫子皓, (2017). "建築放送台: 邁向群眾的建築社會實踐," 建築學報, (102), 33-42.
2. 沈揚庭, 蕭瑋廷, &顏嘉慶. (2022). 機械手臂輔助互承性木構築實現從設計到製造一體化流程. 建築學報-建築設計教學及設計教育專刊Ⅳ. (120)4, 53-68. DOI:10.53106/101632122022060120009
3. 沈揚庭. (2020). 數位智造工坊(RAC-Coon): 成大建築的數位轉型之路. 成大建築簡訊, (94), 1-7.
4. 林晉瑩. (2019). 機械手臂於數位製造及構築之應用—以金屬加工為例 [淡江大學]. 收入 建築學系: 卷 碩士. https://hdl.handle.net/11296/e96t6r
5. 高民翰. (2021). 體素概念之離散設計製造研究 [淡江大學]. 收入 建築學系碩士班: 卷 碩士. https://hdl.handle.net/11296/eg4sjd
英文文獻
1. Apolinarska, A. A., Pacher, M., Li, H., Cote, N., Pastrana, R., Gramazio, F., & Kohler, M. (2021). Robotic assembly of timber joints using reinforcement learning. Automation in Construction, 125, 103569. https://doi.org/10.1016/j.autcon.2021.103569
2. Bemis, A. F., & Burchard, J. (1933). Evolving house.
3. Burger, J., Lloret-Fritschi, E., Scotto, F., Demoulin, T., Gebhard, L., Mata-Falcón, J., Gramazio, F., Kohler, M., & Flatt, R. J. (2020). Eggshell: Ultra-Thin Three-Dimensional Printed Formwork for Concrete Structures. 3D Printing and Additive Manufacturing, 7(2), 48–59. https://doi.org/10.1089/3dp.2019.0197
4. Gandia, A., Parascho, S., Rust, R., Casas, G., Gramazio, F., & Kohler, M. (2019). Towards Automatic Path Planning for Robotically Assembled Spatial Structures. 收入 J. Willmann, P. Block, M. Hutter, K. Byrne, & T. Schork (編輯), Robotic Fabrication in Architecture, Art and Design 2018 (頁 59–73). Springer International Publishing. https://doi.org/10.1007/978-3-319-92294-2_5
5. Hsu, J. S., Shen, Y. T., & Cheng, F. C. (2022). The Development of the Intuitive Teaching-Based Design Method for Robot-Assisted Fabrication Applied to Bricklaying Design and Construction. In International Conference on Human-Computer Interaction (pp. 51-57). Springer, Cham.
6. Krieg, O. D., & Menges, A. (2013). ELASTICALLY BENT TIMBER SHEETS WITH ROBOTICALLY FABRICATED FINGER JOINTS. 8.
7. Mollica, Zachary & Self, Martin. (2016). Advances in Architectural Geometry 2015 - Tree Fork Truss: Geometric Strategies for Exploiting Inherent Material Form. vdf Hochschulverlag AG an der ETH Zürich. https://doi.org/10.3218/3778-4_11
8. Piškorec, L., Jenny, D., Parascho, S., Mayer, H., Gramazio, F., & Kohler, M. (2019). The Brick Labyrinth. 收入 J. Willmann, P. Block, M. Hutter, K. Byrne, & T. Schork (編輯), Robotic Fabrication in Architecture, Art and Design 2018 (頁 489–500). Springer International Publishing. https://doi.org/10.1007/978-3-319-92294-2_37
9. Retsin, G. (2016a). Discrete and Digital: A Discrete Paradigm for Design and Production. 8.
10. Retsin, G. (2016b). Discrete Assembly and Digital Materials in Architecture. 9.
11. Retsin, G. (2019). Discrete: Reappraising the Digital in Architecture. 149.
12. Smigielska, M. (2018). Application of Machine Learning Within the Integrative Design and Fabrication of Robotic Rod Bending Processes. 收入 K. De Rycke, C. Gengnagel, O. Baverel, J. Burry, C. Mueller, M. M. Nguyen, P. Rahm, & M. R. Thomsen (編輯), Humanizing Digital Reality (頁 523–536). Springer Singapore. https://doi.org/10.1007/978-981-10-6611-5_44
13. SUPERMANOEUVRE. (2013). THE CLOUDS OF VENICE. Perspecta, 288–297.
圖片來源
1. Textille blocks :
https://www.archdaily.com/77922/frank-lloyd-wrights-textile-houses
2. 藝術家彌撒教堂
https://redmuseum.church/en/leonardo-mosso
3. Tallinn Architecture Biennale Pavilion
https://www.urdesignmag.com/design/2017/12/11/gilles-retsin-pavilion-tallinn/
4. Real virtuality
https://parametric-architecture.com/real-virtuality-gilles-retsin-architecture
5. Unimate #001 機械手臂
https://kknews.cc/history/mez9g49.html
6. 工業技術加工分類
https://mecorner.pixnet.net/blog/post/21743777-ep0
7. MX3D_Bridge
https://mx3d.com/industries/infrastructure/mx3d-bridge/
8. Wave Pavilion
https://www.archdaily.com/79693/wave-pavilion-macdowell-tomova
9. Balance Bending
http://www.matterdesignstudio.com
10. The Means
https://mariasni.com
11. Clouds of Venice
https://supermanoeuvre.com
12. WireVoxel
https://designcomputationlab.org/rc4-int
13. MetaForm
https://designcomputationlab.org/rc4-int
參考網站
1. Gilles Retsin
https://www.retsin.org/
2. Gramazio Kohler Research
https://gramaziokohler.arch.ethz.ch/
3. Matter Design
http://www.matterdesignstudio.com/
4. Maria Smigielsk
https://mariasni.com/
5. RC4-Design Computation Lab
https://designcomputationlab.org/rc4-int
6. WASP
https://github.com/ar0551/Wasp/
7. Kuka Prc
https://www.robotsinarchitecture.org/kuka-prc
8. Compas
https://compas.dev/
9. Compas Fab
https://gramaziokohler.github.io/compas_fab/latest/
10. ROS
https://www.ros.org/