| 研究生: |
陳梓斌 Chen, Tzu-Pin |
|---|---|
| 論文名稱: |
磷化銦與砷化鎵系列異質接面雙極性電晶體之研究 Investigation of InP- and GaAs-Based Heterojunction Bipolar Transistors (HBTs) |
| 指導教授: |
劉文超
Liu, Wen-Chau 鄭岫盈 Cheng, Shiou-Ying |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 射極突出部厚度 、崩潰特性 、步階式砷化銦鋁鎵集極結構 、基極表面處理 |
| 外文關鍵詞: | base surface treatment, step-graded InAlGaAs collector structure, emitter ledge thickness, breakdown performance |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於極佳之高速表現、高電子移動率特性及高電流驅動能力,使得III-V族材料為基礎之異質接面雙極性電晶體在微波及積體電路應用上極具發展潛力。本論文中,我們提出以有機金屬化學汽相沉積法(MOCVD)研製以磷化銦(InP)與砷化鎵(GaAs)系列之異質接面雙極性電晶體。本文之主要重點在於元件結構之改良與創新設計,其中包括:(i)以步階式砷化銦鋁鎵為集極之雙異質接面雙極性電晶體 (DHBT) 之集極層,(ii)不同射極突出部厚度對磷化銦鎵/砷化鎵異質接面雙極性電晶體特性之影響,(iii)探討不同表面處理之磷化銦鎵/砷化鎵異質接面雙極性電晶體的特性比較。
首先,提出一具有步階式砷化銦鋁鎵集極結構之磷化銦/砷化銦鋁鎵雙異質接面雙極性電晶體。此元件結構之特徵主要係於基極層與集極層間導入一由四元化合物砷化銦鋁鎵材料所構成之步階式集極層結構,使基-集極接面位障尖峰減緩;再者,此四元化合物砷化銦鋁鎵所構成之步階式集極層結構係由不同大小能隙之複數步階層所組合而成,而此複數步階層之排列係自基極層往集極層方向逐漸增加其能隙值,且些複數步階層之能隙係值係大於基極層之能隙值且小於集極層之能隙值,因此,預期其具較佳之崩潰特性。
其次,探討與比較不同溫度環境下對單異質接面與雙異質接面雙極性電晶體元件特性所造成的影響。由實驗結果得知,相較於單異質接面雙極性電晶體,雙異質接面雙極性電晶體元件擁有較低的衝擊游離率,不易提供電子撞擊游離的機會,以及較低的輸出電導,所以呈現較佳之崩潰特性。此外,常見於傳統雙異質接面雙極性電晶體的電流阻擋效應、遲滯現象已不復見。因此,該雙異質接面雙極性電晶體元件極適合應用於高功率消耗與高溫電子電路。
再則,我們探討不同射極突出部厚度對磷化銦鎵/砷化鎵異質接面雙極性電晶體效能之影響。透過詳盡之理論探討,不適當的突出部厚度將於突出部側壁與基極金屬電極層介面間造成嚴重的表面復合現象。所以適當之突出部厚度對於抑制表面復合現象是一個值得探討的問題。從實驗結果中發現,磷化銦鎵/砷化鎵異質接面雙極性電晶體之最佳射極突出部厚度介於100-200 Å之間。當突出部厚度介於100-200 Å之間,元件具有最好的電晶體特性、較小的基極電流、較大的電流增益、較佳的熱穩定性與可靠度等優點。
最後,探討不同表面處理對異質接面雙極性電晶體特性所造成之影響。經由實驗分析比較,經硫化處理後之元件呈現較低之偏移電壓,但具厚度為0.02 m射極突出部之元件具有較佳電晶體行為,包括:電流增益、基極表面電流密度JSR及基極電流理想因子nB,且亦呈現較佳之可靠度特性。因此,根據實驗結果得知,適當的基極表面處理可改善異質接面雙極性電晶體元件之特性,諸如:硫化處理與射極突出部結構。
Heterojunction bipolar transistors (HBTs) based on III-V compound semiconductor material systems have attracted great attention for digital and microwave applications due to the excellent high-speed and high-mobility performances combined with high current driving capability. In this dissertation, we present the HBT’s based on the InP- and GaAs-based material systems grown by low pressure-metal organic chemical vapor deposition (LP-MOCVD). We focus on the improved designs of conventional device structures, including (i) the use of double HBTs (DHBTs) with step-graded InAlGaAs collector, (ii) the influence of various emitter ledge thicknesses on characteristics of InGaP/GaAs HBTs, (iii) the comparative study of InGaP/GaAs HBTs with different base surface treatments.
First, an interesting InP/InGaAs HBT with a step-graded InAlGaAs collector structure is presented and studied. The step-graded collector uses a quaternary InAlGaAs material between base and collector layer. In addition, the potential spike between base and collector layer can be effectively reduced due to the presence of this inserted quaternary InAlGaAs material. The quaternary InAlGaAs step-graded collector structure is composed of several graded layers with different energy band gaps. This variable band lineup is increased from base to collector layer. Therefore, a better breakdown performance can be expected.
Second, the temperature-dependent characteristics of InP/InGaAs-based single- and double-heterojunction bipolar transistor (SHBT and DHBT) devices are compared and studied. Experimentally, as compared with the studied SHBT, the studied DHBT shows a lower electron ionization rate and better breakdown performance. Moreover, the undesired current-blocking effect, switching, hysteresis phenomenon usually found in an InP/InGaAs conventional DHBT are not observed in our DHBT device. Therefore, it is known that, based on experimental results, the studied DHBT device provides the promise for power circuit and high temperature applications.
Third, the influences of various emitter-ledge thicknesses on the InGaP/GaAs heterojunction bipolar transistors performance are investigated. The improper thickness of emitter-ledge passivations should cause serious surface recombination at the edge of emitter ledge. Therefore, the thickness of emitter ledge is a critical issue and should be carefully considered. From experimental results, the optimum emitter-ledge thickness of InGaP/GaAs heterojunction bipolar transistor is 100-200 Å. The device with 100-200 Å emitter ledge thickness exhibits the best performance such as the relatively lower base surface recombination current, larger DC current gain, thermal stability and reliability.
Finally, the InGaP/InGaAs HBTs with different surface passivations on the base surface are fabricated and studied. Experimentally, the device with sulfur treatment passivation exhibits the lowest offset voltage. Nevertheless, the device with a 0.02 m-thick emitter ledge structure shows better transistor behavior such as DC current gain, base surface recombination density JSR, and base current ideality factor nB. In addition, it also exhibits improved thermal stability and reliability. Therefore, from experimental results, the HBT device performance could be improved by appropriate base surface treatments, e.g., sulfur passivation and emitter ledge structure.
[1] A. W. Hanson, S. A. Stockman, and G. E. Stillman, “Comparison of In0.5Ga0.5P/GaAs single- and double-heterojunction bipolar transistors with a carbon-doped base,” IEEE Electron Device Lett., vol. 14, pp. 25-28, 1993.
[2] W. C. Liu, S. Y. Cheng, J. H. Tsai, P. H. Lin, J. Y. Chen, and W. C. Wang, “InGaP/GaAs superlattice-emitter resonant tunneling bipolar transistor (SE-RTBT),” IEEE Electron Devcie Lett., vol. 18, pp. 515-517, 1997.
[3] W. C. Liu, J. H. Tsai, S. Y. Cheng, W. L. Chang, H. J. Pan, and Y. H. Shie, “Investigation of GaAs-based heterostructure- emitter bipolar transistors (HEBTs),” Thin Solid Films, vol. 324, pp. 219-224, 1998.
[4] J. H. Tsai, S. Y. Cheng, H. J. Shih, and W. C. Liu, “Functional heterostructure-emitter bipolar transistor (HEBT) with graded-confinement and pseudomorphic-base structure,” Superlatt. Microstruct., vol. 24, pp. 189-195, 1998.
[5] J. Y. Chen, W. C. Wang, H. J. Pan, S. C. Feng, and K. H. Yu, S. Y.g Cheng, W. C. Liu, “Characteristics of InGaP/GaAs delta-doped heterojunction bipolar transistor,” J. Vac. Sci. Technol. B, vol. 18, pp. 751-756, 2000.
[6] C. R. Bolognesi, M. M. W. Dvorak, P. Yeo, X. G. Xu, and S. P. Watkins, “InP/GaAsSb/InP double HBTs: a new alternative for InP-based DHBTs,” IEEE Trans. Electron Devices, vol. 48, pp. 2631-2639, 2001.
[7] B. P. Yan, C. C. Hsu, X. Q. Wang, and E. S. Yang, “Low turn-on voltage InGaP/GaAsSb/GaAs double HBTs grown by MOCVD,” IEEE Electron Device Lett., vol. 23, pp. 170-172, 2002.
[8] W. B. Chen, Y. K. Su, C. L. Lin, H. C. Wang, S. M. Chen, J. Y. Su, and M. C. Wu, “Fabrication of InGaP/Al0.98Ga0.02As/GaAs oxide-confined collector-up heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 24, pp. 619-621, 2003.
[9] S. I. Fu, S. Y. Cheng, and W. C. Liu, “Characteristics of InGaP/GaAs heterojunction bipolar transistors (HBTs) with sulfur treatments,” Superlatt. Microstruct., vol. 39, pp. 436-445, 2006.
[10] T. P. Chen, C. W. Hung, K. Y. Chu, L. Y. Chen, T. H. Tsai, S. Y. Cheng, and W. C. Liu, “On the temperature-dependent electron impact ionizations in a step-graded InAlGaAs/InP collector double heterojunction bipolar transistor,” Electrochem. and Solid-State Letters, vol. 10, pp. H351-H353, 2007.
[11] C. P. Lee and B. M. Welch, “GaAs MESFET's with partial p-type drain regions,” IEEE Electron Device Lett., vol. 7, pp. 200-202, 1982.
[12] P. C. Chao, P. M. Smith, K. H. G. Duh, and J. C. M. Hwang, “60-GHz GaAs low-noise MESFET’s by molecular-beam epitaxy,” IEEE Trans. Electron Devices, vol. 33, pp. 1852-1857, 1986.
[13] M. Farahmand and K. F. Brennan, “Full band Monte Carlo simulation of zincblende GaN MESFET's including realistic impact ionization rates,” IEEE Trans. Electron Devices, vol. 46, pp. 1319-1325, 1999.
[14] H. M. Chuang, C. K. Wang, K. W. Lin, W. H. Chiou, C. Y. Chen, and W. C. Liu, “Comparative study on dc characteristics of In0.49Ga0.51P-channel heterostructure field-effect transistors with different gate metals,” Semicond. Sci. Technol., vol. 18, pp. 319-324, 2003.
[15] W. C. Liu, W. L. Chang, W. S. Lour, K. H. Yu, K. W. Lin, C. C. Cheng, and S. Y. Cheng, “Temperature-dependence investigation of a high-performance inverted delta-doped V-shaped GaInP/InxGa1-xAs/GaAs pseudomorphic high electron mobility transistor,” IEEE Trans. Electron Devices, vol. 48, pp. 1290-1296, 2001.
[16] J. H. Tsai, “A novel InGaP/InGaAs/GaAs double -doped pHEMT with camel-like gate structure,” IEEE Electron Device Lett., vol. 24, pp. 1-3, 2003.
[17] K. W. Lee, N. Y. Yang, M. P. Houng, Y. H. Wang, and P. W. Sze, “Improved breakdown voltage and impact ionization in InAlAs/InGaAs metamorphic high-electron-mobility transistor with a liquid phase oxidized InGaAs gate,” Appl. Phys. Lett., vol. 87, pp. 263501-1-263501-3, 2005.
[18] P. H. Lai, C. W. Chen, C. I. Kao, S. I. Fu, Y. Y. Tsai, C. W. Hung, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Influences of sulfur passivation on temperature-dependent characteristics of an AlGaAs/InGaAs/GaAs PHEMT,” IEEE Trans. Electron Devices, vol. 53, pp. 1-8, 2006.
[19] W. C. Hsu, D. H. Huang, Y. S. Lin, Y. J. Chen, J. C. Huang, and C. L. Wu, “Performance improvement in tensile-strained In0.5Al0.5As/InxGa1-xAs/In0.5Al0.5As metamorphic HEMT,” IEEE Trans. Electron Devices, vol. 53, pp. 406-412, 2006.
[20] Y. S. Lin and Y. L. Hsieh, “Effect of temperature on novel InAlGaP/GaAs/InGaAs camel-gate pseudomorphic high-electron-mobility transistors,” J. Electrochem. Soc., vol. 153, pp. G498-G501, 2006.
[21] K. H. Su, W. C. Hsu, C. S. Lee, T. Y. Wu, Y. H. Wu, L. Chang, R. S. Hsiao, J. F. Chen, and T. W. Chi, “A novel dilute antimony channel In0.2Ga0.8AsSb/GaAs HEMT,” IEEE Electron Device Lett., vol. 28, pp. 96-99, 2007.
[22] L. Y. Chen, S. Y. Cheng, T. P. Chen, K. Y. Chu, T. H. Tsai, Y. C. Liu, X. D. Liao, and W. C. Liu, “On an InGaP/InGaAs double channel pseudomorphic high electron mobility transistor with graded triple δ-doped sheets,” IEEE Trans. Electron Devices, vol. 55, pp. 3310-3313, 2008.
[23] T. Egawa, B. Zhang, and H. Ishikawa, “High performance of InGaN LEDs on (111) silicon substrates grown by MOCVD,” IEEE Electron Device Lett., vol. 26, pp. 169-171, 2005.
[24] G. A. Shih and J. J. Huang, “Analysis of active matrix GaN-based HFET switch circuits integrated with GaN LED micro-displays,” IEEE Electron Device Lett., vol. 26, pp. 808-810, 2005.
[25] N. C. Chen, W. C. Lien, C. F. Shih, P. H. Chang, T. W. Wang, and M. C. Wu, “Nitride light-emitting diodes grown on Si (111) using a TiN template,” Appl. Phys. Lett., vol. 88, pp. 191110-1-191110-3, 2006.
[26] R. M. Lin, C. L. Jen, Y. L. Chou, and M. C. Wu, “Using the Taguchi method to improve the brightness of AlGaInP MQW LED by wet oxidation,” IEEE Photon. Technol. Lett., vol. 18, pp. 1642-1644, 2006.
[27] C. F. Shen, S. J. Chang, W. S. Chen, T. K. Ko, C. T. Kuo, and S. C. Shei, “Nitride-based high-power flip-chip LED with double-side patterned sapphire substrate,” IEEE Photon. Technol. Lett., vol. 19, pp. 780-782, 2007.
[28] C. H. Yen, Y. J. Liu, K. H. Yu, T. P. Chen, L. Y. Chen, T. H. Tsai, C. Y. Lee, and W. C. Liu, “A new AlGaInP multiple-quantum-well light-emitting diode with a thin carbon-doped GaP contact layer structure,” IEEE Photon. Technol. Lett., vol. 20, pp. 1923-1925, 2008.
[29] S. Kakimoto, K. Shigihara, and Y. Nagai, “Laser diodes in photon number squeezed state,” IEEE J. Quantum Electron., vol. 33, pp. 824-830, 1997.
[30] W. Birk, I. Arvanitidis, P. G. Jonsson, and A. Medvedev, “Physical modeling and control of dynamic foaming in an LD-converter process,” IEEE Trans. Industry Applications, vol. 37, pp. 1067-1073, 2001.
[31] P. H. Lei, C. C. Lin, W. J. Ho, M. C. Wu, and L. W. Laih, “1.3-μm n-type modulation-doped AlGaInAs/AlGaInAs strain-compensated multiple quantum well laser diodes,” IEEE Trans. Electron Devices, vol. 49, pp. 1129-1135, 2002.
[32] F. M. Lee, C. L. Tsai, C. W. Hu, F. Y. Cheng, M. C. Wu, and C. C. Lin, “High-reliable and high-speed 1.3 μm complex-coupled distributed feedback buried-heterostructure laser diodes with Fe-doped InGaAsP/InP hybrid grating layers grown by MOCVD,” IEEE Trans. Electron Devices, vol. 49, pp. 1129-1135, 2002.
[33] H. C. Wei, Y. H. Wang, and M. P. Houng, “N-shaped negative differential resistance in a transistor structure with a resistive gate,” IEEE Trans. Electron Devices, vol. 41, pp. 1327-1333, 1994.
[34] W. C. Liu, J. H. Tsai, W. S. Lour, L. W. Laih, K. B. Thei and C. Z. Wu, “A novel InGaP/GaAs s-shaped negative-differential-resistance (NDR) switching for multiple-valued logic application,” IEEE Trans. Electron Devices, vol. 44, pp. 520-525, 1997.
[35] D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A double-barrier-emitter triangular-barrier optoelectronic switch,” IEEE J. Quantum Electron., vol. 40, pp. 413-419., 2004.
[36] D. F. Guo, C. H. Yen, J. H. Tsai, W. S. Lour, and W. C. Liu, “Characteristics improvement for an n-p-n heterostructure optoelectronic switch by introducing a wide-gap layer in the collector,” J. Electrochem. Soc., vol. 154, pp. H13-H15, 2007.
[37] H. Kroemer, “Theory of wide-gap emitter for transistors,” Proc. IRE, vol. 45, pp. 1535-1536, 1957.
[38] M. J. Mondry and H. Kroemer, “Heterojunction bipolar transistor using a (Ga,In)P emitter on a GaAs base, grown by molecular beam epitaxy,” IEEE Electron Device Lett., vol. 6, pp. 175-177, 1985.
[39] M. A. Rao, E. J. Caine, H. Kroemer, S. I. Long, and D. I.Babicc, “Determination of valence and conduction-band discontinuities at the (Ga,In)P/GaAs heterojunction by C-V profiling,” J. Appl. Phys., vol. 61, pp. 643-649, 1987.
[40] E. Tokumitsu, A. G. Dentai, and C. H. Joyner, “GaInAs/InP pseudo-heterojunction bipolar transistors grown by MOVPE,” IEE Electron Letters, vol. 25, no. 22, pp. 1539-1540, 1989.
[41] S. Y. Cheng, C. Y. Chen, J. Y. Chen, W. C. Liu, W. L. Chang, and M. H. Chiang, “Comprehensive studies of InGaP/GaAs heterojunction bipolar transistors with different thickness of setback layers,” Superlattice and Microstructures, vol. 37, pp. 171-183, 2005.
[42] K. Y. Chu, S. Y. Cheng, T. P. Chen, C. W. Hung, L. Y. Chen, T. H. Tsai, W. C. Liu, and L. A. Chen “Influence of emitter ledge thickness on the surface recombination mechanism of InGaP/GaAs heterojunction bipolar transistor,” Superlattices & Microstructures, vol.43, pp.368-374 , 2008.
[43] W. S. Lour, “High-gain, low-offset-voltage and zero potential spike by InGaP/GaAs δ-doped single heterojunction bipolar transistor (δ-SHBT),” IEEE Trans. Electron Devices, vol.44, pp.346-348, 1997.
[44] S. Y. Cheng, H. J. Pan, S. C. Feng, K. H. Yu, and W. C. Liu, “A new wide voltage operation regime double heterojunction bipolar transistor,” Solid-State Electron., vol. 44, pp. 581-585, 2000.
[45] S. Y. Cheng, K. Y. Chu, L. Y. Chen, L. A. Chen, and C. Y. Chen, “Temperature-dependent dc characteristics of InGaP/GaAs heterojunction bipolar transistors (HBTs) with different passivation,” J. Electrochem. Soc., vol. 154, pp. H730-H733, 2007.
[46] J. H. Tsai, I. H. Hsu, C. M. Li, N. X. Su, Y. Z. Wu, Y. S. Huang “Comparison of heterostructure-emitter bipolar transistors (HEBTs) with InGaAs/GaAs superlattice and quantum-well base structures,” Solid-State Electron., vol. 52, pp. 1018-1023, 2008.
[47] R. Lyer, R. R. Chang, and D. L. Lile, “Sulfur as a surface passivation for InP,” Appl. Phys. Lett., vol. 53, pp. 134-136, 1988.
[48] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett., vol. 60, pp. 371-373, 1992.
[49] Y. T. Oh, S. C. Byun, B. R. Lee, T. W. Kang, C. Y. Hong, S. B. Park, H. K. Lee, and T.W. Kim, “Diminution of the surface states on GaAs by a sulfur treatment,” J. Appl. Phys., vol. 76, pp.1959-1961, 1994.
[50] S. I. Fu, P. H. Lai, Y. Y. Tsai, C. W. Hung, C. H. Yen, S. Y. Cheng, and W. C. Liu, “Performance enhancement of a heterojunction bipolar transistor (HBT) by two-step passivation,” Applied. Surface Science, vol. 252, pp. 7755-7759, 2006.
[51] J. W. Park, D. Pavlidis, S. Mohammadi, J. L Guyaux, and J. C. Garcia, “Improved emitter transit time using AlGaAs–GaInP composite emitter in GaInP/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol.48, pp.1297-1303, 2001.
[52] M. K. Tsai, S. W. Tan, Y. W. Wu, Y. J Yang, and W. S. Lour, “Improvements in direct-current characteristics of Al0.45Ga0.55As–GaAs digital-graded superlattice-emitter HBTs with reduced turn-on voltage by wet oxidation,” IEEE Trans. Electron Devices, vol.50, pp.303-309, 2003.
[53] Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, Y. J. Chen, and Y. S. Lin, “Investigation of InGaP/GaAs heterojunction bipolar transistor with doping graded base,” J. Vac. Sci. Technol. B, vol. 21, pp. 2555-2557, 2003.
[54] S. Y. Cheng, K. Y. Chu, and L. Y. Chen, “A novel InGaP/ AlXGa1-XAs /GaAs CEHBT,” IEEE Electron Device Lett., vol. 27, pp.532-534, 2006.
[55] W. Liu, “Extrinsic base surface recombination current in GaInP/GaAs heterojunction bipolar transistors with near-unity ideality factor,” Jpn. J. Appl. Phys., vol. 32, pp. L713-L715, 1992.
[56] W. Liu, E. Beam, T. Henderson, and S. K. Fan, “Extrinsic base surface passivation in GaInP/ GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 14, pp.301-303, 1993.
[57] M. T. Fresina, Q. J. Hartmann, and G. E. Stillman, “Selective self-aligned emitter ledge formation for heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 17, pp. 555-556, 1996.
[58] T. P. Chen, S. I. Fu, J. H. Tsai, W. S. Lour, D. F. Guo, S. Y. Cheng, and W. C. Liu, “Temperature-dependent characteristics of an emitter-ledge passivated InGaP/GaAs heterojunction bipolar transistor,” Semicond. Sci. Technol., vol. 21, pp. 1733-1737, 2006.
[59] C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett., vol. 51, pp. 33-35, 1987.
[60] C. J. Sandroff, M. S. Hegde, L. A. Farrow, C. C. Chang, and J. P. Harbison, “Electronic passivation of GaAs surfaces through the formation of arsenic-sulfur bonds,” Appl. Phys. Lett., vol. 54, pp. 362-364, 1989.
[61] H. Oigawa, J. F. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (NH4)2SX treatment on the surface of III-V compound semiconductors,” Jpn. J. Appl. Phys., vol. 30, pp. 322-325, 1991.
[62] H. Kanbe, J. C. Vlcek, and C. G. Fonstad, “(In,Ga)As/InP n-p-n heterojunction bipolar transistors grown by liqued phase wpitaxy with high dc current gain,” IEEE Electron Device Lett., vol. 5, pp. 5-7, 1984.
[63] T. Ohishi, Y. Abe, H. Sugimoto, K. Ohtsuka, and T. Matsui, “Ultra-high current gain InGaAsP/InP heterojunction bipolar transistor,” IEE Electron. Lett., vol. 26, pp. 392-393, 1990.
[64] R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframoboise, P. J. Poole, and S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett., vol. 73, pp. 665-667, 1998.
[65] H. J. Pan, S. Y. Cheng, W. L. Chang, S. C. Feng, K. H. Yu, and W. C. Liu, “A new In0.53Al0.22Ga0.25As/InP heterojuction bipolar transistor with -doped continuous-conduction-band (CCB) structure,” IEE Electron. Lett., vol. 35, pp. 428-429, 1999.
[66] V. E. Houtsma, J. Chen, J. Frackoviak, T. Hu, R. F. Kopf, R. R. Reyes, A. Tate, Y. Yang, N. G. Weimann, and Y. K. Chen, “Self-heating of submicrometer InP-InGaAs DHBTs,” IEEE Electron Device Lett., vol. 25, pp. 357-359, 2004.
[67] T. P. Chen, C. J. Lee, W. S. Lour, D. F. Guo, J. H. Tsai, and W. C. Liu, “On the breakdown behaviors of InP/InGaAs based heterojunction bipolar transistors (HBTs),” Solid-State Electron., vol. 53, pp. 190-194, 2009.
[68] C. Nguyen, T. Liu, M. Chen, H. C. Sun, and D. Rensch, “AlInAs/GaInAs/InP double heterojunction bipolar transistor with a novel base–collector design for power applications,” IEEE Electron Device Lett., vol. 17, pp. 133–135, Mar. 1996.
[69] H. Wang and G. I. Ng, “Current transient in polyimide-passivated InP/InGaAs heterojunction bipolar transistors: systematic experiments and physical model,” IEEE Trans. Electron Devices, vol.47, pp.2261-2269, 2000.
[70] Y. S. Lin., D. H. Huang, W. C. Hsu, K. H. Su, and T. B. Wang, “Enhancing the current gain in InP/InGaAs double heterojunction bipolar transistors using emitter edge thinning,” Semicond. Sci. Technol, vol. 21, pp.303-305, 2006.
[71] T. P. Chen, S. Y. Cheng, W. H. Chen, C. W. Hung, K. Y. Chu, L. Y. Chen, T. H. Tsai, and W. C. Liu, “Characteristics of an InP/InGaAs double heterojunction bipolar transistor (DHBT) with an InAlGaAs/InP composite collector structure,” J. Electrochem. Soc., vol. 155, pp. H136-H139, 2008.
[72] W. C. Liu, S. Y. Cheng, W. L. Chang, H. J. Pan, and Y. H. Shie, “Application of -doped wide-gap collector structure for high-breakdown and low-offset voltage transistors,” Appl. Phys. Lett., vol. 73, pp. 1397-1399, 1998.
[73] Y. S. Lin, “Breakdown characteristics of InP/InGaAs composite-collector double heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 83, pp. 5545-5547, 2003.
[74] Y. Z. Xiong, G. I. Ng, H. Wang, C. L. Law, K. Radhakrishnan, and J. S. Fu, “Scaling of microwave noise and small-signal parameters of InP/InGaAs DHBT with high dc current gain,” IEEE Trans. Electron Devices, vol. 49, pp. 1308-1311, 2001.
[75] J. H. Tsai and Y. C. Kang, “DC performance of InP/InGaAs pnp heterostructure-emitter bipolar transistor,” IEEE Trans. Electron Devices, vol. 53, pp. 1265-1268, 2006.
[76] J. Y. Chen, D. F. Guo, S. Y. Cheng, K. M. Lee, C. Y. Chen, H. M. Chuang, S. Y. Fu, and W. C. Liu, “A new InP-InGaAs HBT with a superlattice-collector structure,” IEEE Electron Device Lett., vol. 25, pp. 244-246, 2004.
[77] D. Caffin, A. M. Duchenois, F. Heliot, C. Besombes, J. L. Benchimol, and P Launay, “Base-collector leakage currents in InP/InGaAs double heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 44, pp. 930-936, 1997.
[78] M. Kahn, S. Blayac, M. Riet, Ph. Berdaguer, V. Dhalluin, F. Alexandre, and J. Godin, “Measurement of base and collector transit times in thin-base InGaAs/InP HBT,” IEEE Electron Device Lett., vol. 24, pp. 430-432, 2003.
[79] H. Wang, H. Yang, K. Radhakrishnan, T. K. Ng, and W. C. Cheong, “The influence of emitter material on silicon nitride passivation-induced degradation in InP-based HBTs,” IEEE Trans. Electron Devices, vol. 51, pp. 8-13, 2004.
[80] Z. Griffith, M. Dahlstrom, M. J. W. Rodwell, X. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, , D. Lubyshev, X. M. Fang, and W. K. Liu, “InGaAs-InP mesas DHBTs with simultaneously high fT and fmax and low Ccb/IC ratio,” IEEE Electron Device Lett., vol. 25, pp. 250-252, 2004.
[81] M. Ida, K. Kurishima, and N. Watanabe, “Over 300 GHz fT and fmax InP/InGaAs double heterojunction bipolar transistors with a thin pseudomorphic base,” IEEE Electron Device Lett., vol. 23, pp. 694-696, 2002.
[82] W. C. Liu, W. C. Wang, J. Y. Chen, H. J. Pan, S. Y. Cheng, K. B. Thei, and W. L. Chang, “A novel InP/InAlGaAs negative-differential-resistance heterojunction bipolar transistor (NDR-HBT) with interesting topee-shaped current-voltage characteristics,” IEEE Electron Device Lett., vol. 20, pp. 510-513, 1999.
[83] T. C. Peng, Y. H. Huang, C. C. Yang, K. F. Huang, F. M. Lee, M. C. Wu, and C. L. Ho, “Low cost and high performance of 1.3 m AlGaInAs/InP uncooled laser diodes,” IEEE Photon. Technol. Lett., vol. 18, pp. 1380-1382, 2006.
[84] S. Y. Cheng, “Comprehensive study of an InGaP/AlGaAs/GaAs heterojunction bipolar transistor (HBT) with a continuous conduction-band structure”, Semicond. Sci. Technol., vol.17, pp.701-707, 2002.
[85] J. Y. Chen, C. Y. Chen, K. M. Lee, C. H. Yen, S. F. Tsai, S. Y. Cheng, and W. C. Liu, “Temperature-dependent dc characteristics of an InGaAs/InGaAsP heterojunction bipolar transistor with an InGaAsP spacer and a composite-collector structure,” J. Vac. Sci. Technol. B, vol. 22, pp. 2727-2733, 2004.
[86] C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chung, R. C. Liu, C. H. Yen, J. Y. Chen, C. C. Cheng, and W. C. Liu, “DC characterization of an InP-InGaAs tunneling emitter bipolar transistor (TEBT),” IEEE Trans. Electron Devices, vol. 50, pp. 874-879, 2003.
[87] W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. Hui. Yu, and C. C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 21, pp. 524-527, 2000.
[88] H. J. Pan, W. C. Wang, K. B. Thei, C. C. Cheng, K. H. Yu, K. W. Lin, C. Z. Wu, and W. C. Liu, “Investigation of temperature-dependent performances of InP/In0.53Ga0.34Al0.13As heterojunction bipolar transistors,” Semicond. Sci. Technol, vol. 15, pp. 1101-1106, 2000.
[89] B. Jalali, Y. K. Chen, R. N. Nottenburg, D. Sivco, D. A. Humphrey, and A.Y. Cho, “Influence of base thickness on collector breakdown in abrupt AlInAs/InGaAs heterostructure bipolar transistors,” IEEE Electron Device Lett., vol. 11, pp. 400–402, 1990.
[90] R. J. Malik, N. Chand, J. Nagle, R. W. Ryan, K. Alavi, and A.Y. Cho, “Temperature dependence of common-emitter I-V and collector breakdown voltage characteristics in AlGaAs/GaAs and AlInAs/GaInAs HBTs grown by MBE”, IEEE Electron Device Lett., vol. 13, pp. 557-559, 1992.
[91] D. Ritter, R. A. Hamm, A. Feygenson, H. Temkin, M. B. Panish, and S. Chandrasekhar, “Bistable hot electron transport in InP/GaInAs composite collector heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 61, pp. 70-72, 1992.
[92] S. P. McAlister, W. R. Mckinnon, Z. Abid, and E. E. Guzzo, “Hysteresis in the switching of hot electrons in InP/InGaAs double-heterojunction bipolar transistors,” J. Appl. Phys., vol. 76, pp. 2559-2561, 1994.
[93] Z. Abid, S. P. McAlister, W. R. McKinnon, and E. E. Guzzo, “Temperature dependent dc characteristics of an InP/InGaAs/InGaAsP HBT,” IEEE Electron Device Lett., vol. 15, pp. 178-180, 1994.
[94] W. Liu, “Handbook of III-V Heterojunction Bipolar Transistors,” John Wiley & Sons, New York, 1998.
[95] T. P. Chen, S. Y. Cheng, C. W. Hung, K. Y. Chu, L. Y. Chen, T. H. Tsai, and W. C. Liu, “A new InP/InGaAs double heterojunction bipolar transistor (DHBT) with a step-graded InAlGaAs collector structure,” IEEE Electron Device Lett., vol. 29, pp. 11-14, 2008.
[96] S. H. Chen, K. H. Teng, H. Y. Chen, S. Y. Wang, and J. I. Chyi, “Low turn-on voltage and high-current InP/In0.37Ga0.63As0.89Sb0.11/In0.53Ga0.47As double heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 29, pp. 655-657, 2008.
[97] Y. Z. Xiong, G. I. Ng, H. Wang, and J. S. Fu, “DC and microwave noise transient behavior of InP/InGaAs double heterojunction bipolar transistor (DHBT) with polyimide passivation,” IEEE Trans. Electron Devices, vol. 48, pp. 2192-2197, 2001.
[98] A. Feygenson, D. Ritter, R. A. Hamm, P. R. Smith, P. K. Montgomery, R. D. Yadvish, H. Temkin, and M. B. Panish, “InGaAs/InP composite collector heterojunction bipolar transistors,” Electron. Lett., vol. 28, pp. 607-609, 1992.
[99] S. P. McAlister, W. R. Mckinnon, R. Driad, and A. P. Renaud, “Use of dipole doping to suppress switching in indium phosphide double heterojunction bipolar transistors,” J. Appl. Phys., vol. 82, pp. 5231-5234, 1997.
[100] H. Wang and G. I. Ng, “Avalanche multiplication in InP/InGaAs double heterojunction bipolar transistors with composite collectors,” IEEE Trans. Electron Devices, vol. 47, pp. 1125-1133, 2000.
[101] Z. Griffith, Y. Kim, M. Dahlstrom, A. C. Gossard, and M. J. W. Rodwell, “InGaAs-InP metamorphic DHBTs grown on GaAs with lattice-matched device performance and fT, fmax>268 GHz,” IEEE Electron Device Lett., vol. 25, pp. 675-677, 2004.
[102] Z. Griffith, M. J. W. Rodwell, X. M. Fang, D. Loubychev, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “InGaAs/InP DHBTs with 120-nm collector having simultaneously high fT, fmax ≥ 450 GHz,” IEEE Electron Device Lett., vol. 26, pp. 530-532, 2005.
[103] B. Willen, U. Westergren, and H. Asonen, “High-gain, high-speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector Heterojunction,” IEEE Electron Device Lett., vol. 16, pp. 479-481, 1995.
[104] H. Wang, H. Yang, W. P. Neo, K. Radhakrishnan, and C. L. Tan, ” Temperature dependence of avalanche multiplication in InP-based HBTs with InGaAs/InP composite collector: device characterization and physics model,” IEEE Trans. Electron Devices, vol. 50, pp. 2335-2343, 2003.
[105] J. Y. Chen, S. Y. Cheng, C. Y. Chen, K. M. Lee, C. H. Yen, S. Y. Fu, S. F. Tsai, and W. C. Liu, “Characteristics of an InP-InGaAs-InGaAsP HBT,” IEEE Trans. Electron Devices, vol. 51, pp. 1935-1938, 2004.
[106] D. Ritter, R. A. Hamm, A. Feygenson, and M. B. Panish, “Anomalous electric field and temperature dependence of collector multiplication in InP/Ga0.47In0.53As heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 60, pp. 3150-3152, 1992.
[107] W. C. Liu, H. J. Pan, S. Y. Cheng, W. C. Wang, J. Y. Chen, S. C. Feng, and K. H. Yu, “Applications of an In0.53Ga0.25Al0.22As/InP continuous-conduction-band structure for ultralow current operation transistors,” Appl. Phys. Lett., vol. 75, pp. 572-574, 1999.
[108] H. Wang and G. I. Ng, “Investigation of the degradation of InGaAs /InP double HBTs under reverse base-collector bias stress,” IEEE Trans. Electron Devices, vol. 48, pp. 2647-2654, 2001.
[109] C. Canali, C. Forzan, A. Neviani, L. Vendrame, E. Zanoni, R. A. Hamm, R. Malik, F. Capasso, and S. Chandrasekhar, “Measurement of the electron ionization coefficient at low electric fields in InGaAs-based heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 66, pp. 1095-1097, 1995.
[110] W. K. Ng, C. H. Tan, J. P. R. David, P. A. Houston, M. Yee, and J. S. Ng, “Temperature dependent low-field electron multiplication in In0.53Ga0.47As,” Appl. Phys. Lett., vol. 83, pp. 2820-2822, 2003.
[111] S. Y. Cheng, W. C. Wang, W. L. Chang, J. Y. Chen, H. J. Pan, and W. C. Liu, “A new InGaP/GaAs double delta-doped heterojunction bipolar transistor (D3HBT),” Thin solid films, vol. 345, pp. 270-272, 1999.
[112] C. M Wang and Y. M Hsin, “Enhanced fT and linearity performance of InGaP/GaAs HBTs using non-uniform doping collector,” Semicond. Sci. Technol, vol. 22, pp. 330-336, 2007.
[113] Y. S. Lin and J. J. Jiang, “Novel delta-doped InAlGaP/ GaAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 29, pp.671-573, 2008.
[114] H. H. Lin and S. C. Lee, “Super-gain AlGaAs/GaAs heterojunction bipolar transistors using an emitter edge-thinning design,” Appl. Phys. Lett., vol. 47, pp. 839-841, 1985.
[115] W. Liu, D. Costa, and J. Harris, Jr., “Comparison of the effect of surface passivation and base quasi-electric fields on the current gain of AlGaAs/GaAs heterojunction bipolar transistors grown on GaAs and Si substrates,” Appl. Phys. Lett., vol. 59, pp. 691-693, 1991.
[116] W. S. Lour and J. L. Hsieh, “Effects of passivation-layer thickness and current gain enhancement of InGaP/GaAs -doped single heterojunction bipolar transistors using an InGaP passivation layer,” Semicond. Sci. Technol., vol. 13, pp. 847-851, 1998.
[117] H. Wang and G. I. Ng, “A novel technology to form self-aligned emitter-ledge for heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 24, pp. 628-630, 2003.
[118] N. Hayama and K. Honjo, “Emitter size effect on current gain in fully self-aligned AlGaAs/GaAs HBT’s with AlGaAs surface passivation layer,” IEEE Electron Device Lett., vol. 11, pp. 388-390, 1990.
[119] W. Liu, “Effect of emitter-base contact spacing on the current gain in heterojunction bipolar transistors,” Jpn. J. Appl. Phys., vol. 31, pp. 2349-2351, 1993.
[120] T. Henderson, “Modeling gallium arsenide heterojunction bipolar transistor ledge variations for insight into device reliability,” Microelectronics Reliability, vol. 42, pp. 1011-1020, 2002.
[121] W. Liu and J. S. Harris, Jr., “Critical passivation ledge thickness in AlGaAs/GaAs heterojunction bipolar transistors,” J. Vac. Sci. & Technol. B, vol. 11, pp. 6-9, 1993.
[122] K. S. Stevens, R. E. Welser, M. Chaplin, C. R. Lutz, and N. Pan, “Ledge design of the InGaP emitter GaAs based HBTs,” GaAs Applications Symposium, 2000.
[123] W. Liu, S. K. Fan, T. Henderson, and D. Davito, “Temperature dependences of current gains in GaInP/GaAs and AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 40, pp. 1351-1353, 1993.
[124] O. Ueda, A. Kawano, T. Takahashi, T. Tomioka, T. Fujii, and S. Sasa, “Current status of reliability of InGaP/GaAs HBTs,” Solid-State Electron., vol. 41, pp. 1605-1610, 1997.
[125] S. I Fu, S. Y. Cheng, T. P. Chen, P. H. Lai, Y. Y. Tsai, C. W. Hung, C. H. Yen, and W. C. Liu, “Comprehensive study of emitter ledge thickness of InGaP/GaAs HBTs,” IEEE Trans. Electron Devices, vol. 53 , pp. 2689-2695, 2006.
[126] W. Liu, D. Costa, and J. S. Harris, Jr, “Theoretical comparison of base bulk recombination current and surface recombination current of a mesa AlGaAs/GaAs heterojunction bipolar transistor,” Solid State Electron., vol. 34, pp. 1119-1123, 1991.
[127] T. P. Chen, S. I. Fu, S. Y. Cheng, J. H. Tsai, D. F. Guo, W. S. Lour, and W. C. Liu, “Surface treatment effect on temperature-dependent properties of InGaP/GaAs heterobipolar transistors,” J. Appl. Phys., vol. 101, pp. 034501-1-034501-5, 2007.
[128] C. K. Song and P. J. Choi, “Effects of InGaP heteropassivation on reliability of GaAs HBT’s,” Microelectronics Reliability, vol. 39, pp. 1817-1822, 1999.
[129] B. P. Yan, Y. F. Yang, C. C. Hsu, H. B. Lo, and E. S. Yang, “A reliability comparison of InGaP/GaAs HBTs with and without passivation ledge,” Microelectron. Reliab., vol. 41, pp. 1959-1963, 2001.
[130] T. Henderson, “Physics of degradation in GaAs-based heterojunction bipolar transistors,” Microelectronics Reliability, vol. 39, pp. 1033-1042, 1999.
[131] C. P. Lee, F. Chau, B. Lin, M. Kretschmar, and W. Ma, “A phenomenological model for the reliability of GaAs based heterojunction bipolar transistors,” J. Appl. Phys., vol. 103, pp. 094512, 2008.
[132] L. T. Manera, L. B. Zoccal, J. A. Diniz, P. J. Tatsch, and Doi. I, “Surface passivation of InGaP/GaAs HBT using silicon-nitride film deposited by ECR-CVD plasma,” Applied. Surface Science, vol. 254, pp. 6063-6066, 2008.
[133] X. Liu, J. S. Yuan, and J. J. Liou, “InGaP/GaAs heterojunction bipolar transistor and RF power amplifier reliability,” Microelectronics Reliability, vol. 48, pp. 1212-1215, 2008.
[134] Y. S. Lin, Y. H. Wu, J. S. Su, W. C. Hsu, S. D. Ho, and W. Lin, “An improved In0.5Ga0.5P/GaAs double heterostructure-emitter bipolar transistor using emitter edge-thinning technique,” Jpn. J. Appl. Phys., vol. 36, pp. 2007-2009, 1997.
[135] B. G. Min, J. M. Lee, S. I. Kim, K. H. Lee, and C. W. Ju, “Current gain improvement of InGaP/GaAs HBT by a newly developed emitter ledge process,” J. Korean Phys. Soc., vol. 42, pp. S518-S521, 2003.
[136] S. Y. Chiu, H. R. Chen, W. T. Chen, M. K. Hsu, W. C. Liu, J. H. Tsai, and W. S. Lour, “Low-dark-current heterojunction phototransistors with long-term stable passivation induced by neutralized (NH4)2S treatment,” Jpn. J. Appl. Phys., vol. 47, pp. 35-42, 2008.
[137] C. Y. Chen, S. I. Fu, S. Y. Cheng, C. Y. Chang, C. H. Tsai, C. H. Yen, S. F. Tsai, R. C. Liu, and W. C. Liu, “Influences of surface sulfur treatments on the temperature-dependent characteristics of HBTs,” IEEE Trans. Electron Devices, vol. 51, pp. 1963-1971, 2004.
[138] S. Y. Cheng, S. I. Fu, T. P. Chen, P. H. Lai, R. C. Liu, K. Y. Chu, L. Y. Chen, and W. C. Liu, “The effect of sulfur treatment on the temperature-dependent performance of InGaP/GaAs HBTs,” IEEE Trans. on Device and Materials Reliability, vol. 6, pp. 500-508, 2006.
[139] S. I. Fu, S. Y. Cheng, T. P. Chen, P. H. Lai, C. W. Hung, K. Y. Chu, L. Y. Chen, and W. C. Liu, “Further suppression of surface recombination of an InGaP/GaAs HBT by conformal passivation,” IEEE Trans. Electron Devices, vol. 53, pp. 2901-2907, 2006.
[140] S. W. Tan, H. R. Chen, M. Y. Chu, W. T. Chen, A. H. Lin, M. K. Hsu, T. S. Lin, and W. S. Lour, “Comparisons between InGaP/GaAs heterojunction bipolar transistors with a sulfur- and an InGaP- passivated base surface,” Superlattices & Microstructures, vol. 37, pp. 401-409, 2005.
[141] N. Chand, R. Fischer, T. Henderson, J. Klem, W. Kopp, and H. Morkoc, “Temperature dependence of current gain in AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 45, pp. 1086-1088, 1984.
[142] S. I. Fu, S. Y. Cheng, P. H. Lai, Y. Y. Tsai, C. W. Hung, C. H. Yen, and W. C. Liu, “A study of composite-passivation of an InGaP/GaAs heterojunction bipolar transistor,” J. Electrochem. Soc., vol. 153, pp. G938-G942, 2006.
[143] T. P. Chen, C. J. Lee, S. Y. Cheng, W. S. Lour, D. F. Guo, J. H. Tsai, G. W. Ku, and W. C. Liu, “Effect of emitter ledge thickness on InGaP/GaAs heterojunction bipolar transistor (HBTs),” Electrochem. and Solid-State Letters, vol. 12, pp. H41-H43, 2009.
[144] S. H. Chen, S. Y. Wang, R. J. Hsieh, and J. I. Chyi, “InGaAsSb/InP double heterojunction bipolar transistors grown by solid-source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 28, pp. 679-681, 2007.
[145] I. H. Lee, S. D. Lee, J. K. Rhee, and H. S. Park, “Studies on air-bridge processes for mm-wave MMIC's applications,” J. Korean Phys. Soc., vol. 35, pp. S1043-S1046, 1999.
[146] B. G. Min, J. M. Lee, S.I. Kim, C. W. Ju, and K. H. Lee, “Fabrication of reliable self-aligned lnP/lnGaAs/lnP double heterojunction bipolar transistor with hexagonal emitter mesa structure,” J. Korean Phys. Soc., vol. 49, pp. S780-S783, 2006.
[147] R. E. Welser, P. M. DeLuca, and N. Pan, “Turn-on voltage investigation of GaAs-based bipolar transistors with Ga1-XInXAs1-yNy base layers,” IEEE Electron Device Lett., vol. 21, pp. 554–556, 2000.
[148] P. M. DeLuca, C. R. Lutz, R. E. Welser, T. Y. Chi, E. K. Huang, R. J. Welty, and P. M. Asbeck, “Implementation of reduced turn-on voltage InGaP HBTs using graded GaInAsN base regions,” IEEE Electron Device Lett., vol. 23, pp. 582–584, 2002.
[149] H. Wang, K. W. Chang, L. T. Tran, J. C. Cowles, T. R. Block, E. W. Lin, G. S. Dow, A. K. Oki, D.C. Streit, and B. R. Allen, “Low phase noise millimeter-wave frequency sources using InP-based HBT MMIC technology,” IEEE J. Solid-St. Circ., vol. 31, pp. 1419–1425, 1996.
[150] K. W. Kobayashi, D. K. Umemoto, T. R. Block, A. K. Oki, and D. C. Streit, “A monolithically integrated HEMT-HBT low noise high linearity variable gain amplifier,” IEEE J. Solid-St. Circ., vol. 31, pp. 714–718, 1996.
[151] T. Yoshimasu, M. Akagi, N. Tanba, and S. Hara, “An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications,” IEEE J. Solid-St. Circ., vol. 33, pp. 1290–1296, 1998.