簡易檢索 / 詳目顯示

研究生: 邱漢欽
Chiu, Han-Chin
論文名稱: 在不同氣氛下合成、研磨及熱處理之LiMnO2斜方晶相結構與電化學行為的探討
Electrochemical characteristics and structure of orthorhombic LiMnO2 via synthesis of various atmosphere, grinding, and heat treatment.
指導教授: 方滄澤
Fang, Tsang-Tse
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 145
中文關鍵詞: 鋰錳氧化物鋰離子電池陰極粉末斜方晶相交流阻抗
外文關鍵詞: orthorhombic phase, Li-ion battery, lithium manganese oxide, ac impedance
相關次數: 點閱:68下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由文獻上得知,要製備斜方晶相LiMnO¬2(Orthorhombic LiMnO2)並不是那麼容易,必需將計量的鋰及錳的化合物作為起始反應物,在惰性氣氛下(如氬氣)煆燒合成,但由於製程上的不同亦有得到性質不盡相同的生成物;基本上可以合成的X光繞射圖譜上觀察出,當在2θ=18.3°的角度有產生一繞射強度時,代表其斜方晶相LiMnO2中含有單斜晶相LiMnO2(Monoclinic LiMnO2),使得在這角度的地方有一繞射峰。
    而從X光繞射圖譜所分析得的結果得知,雖然同為LiMnO2確因其晶體結構扭曲程度的不同,造成其有斜方晶相及單斜晶相兩種不同的結構,本題目主要對斜方晶相的LiMnO2作探討;但在以通純氬氣煆燒所合成的LiMnO2粉末中,雖能合成出斜方晶相之LiMnO2但確相對的亦含有部份的單斜晶相,無法百分之百形成斜方晶相,我們將氣氛改變成還原性更強的氣氛1%H299%Ar,確實可以合成出單一相的斜方晶相,並且由原本的加熱持溫溫度950℃,降低至600℃,就可以合成,其表示斜方晶相需由在更強的還原環境下方能合成。
    既然藉由氣氛的改變可生成不同晶相比例的LiMnO2,而兩種晶相皆可作為鋰離子二次電池的陰極材料,我們針對其電化學性質作分析;含有部份單斜晶相之LiMnO2的材料電容量~150mAg-1比單相的斜方晶相電容量~140mAg-1較為佳。
    利用球磨的方法,將合成後的LiMnO2粉末18小時的球磨後,使得粉末的粒徑變小,而且粉末晶粒的聚集程度也降低了,改善了粉末的性質,使得球磨後的粉末之電荷轉移移阻抗值較未球磨前阻抗值小,而電荷轉移阻抗值與導電率成反比,因此電荷轉移阻抗值隨陰極材料的物理性質而改變。
    經過球磨後的粉末,結構內部往往含有殘留應力,使得離子在做嵌入遷出時受阻,我們再將球磨後的粉末在氬氣氣氛下加熱至700℃持溫2小時做退火的動作,以釋放應力,得到在電容量有提升的作用。
    最後,經由交流阻抗圖譜,測得的Nyquist圖形,來測量在不同氣氛下合成的粉末及其在球磨前後以及熱處理所產生不同程度的鋰離子在電池中擴散的速率。理論上,除了不同氣氛所合成的粉末因素外,球磨的前後,造成的粉末表面積變大且粒子之間的接觸面積增大而電荷轉移阻抗隨著變小,如此我們可以得到較佳的鋰電池陰極材料。

    Pure and no monoclinic phase of orthorhombic LiMnO2 is hard to be prepared. It is usually synthesized by precursor under inert or reduced atmosphere. We first prepare the precursor via citrate process and the powder is calcined under 99% Argon mixed with 1% hydrogen flow-gas to produce pure orthorhombic LiMnO2. From the XRD pattern, we find that there is no intensity on the diffraction angle of 18.3° and is no boardening on 24.8°. Compared to the powder synthesized under pure Argon flow-gas, the pure O-LiMnO2 seems reveal low capacity 140mAg-1 that contains monocline impurity inside is 150mAg-1. Ball-milling and heat treatment on the above two powders can improve the electrochemical behavior through the analysis of charge-discharge cycling test and A.C. impedance. After all, this cathode material of Li-ion battery will be more deeply known.

    第一章 緒論 -------------------------------------------------1 1-1 前言---------------------------------------------------1 1-2 本研究之重點及目的-------------------------------------3 第二章 理論基礎與文獻回顧------------------------------------4 2-1 鋰離子電池簡介-----------------------------------------4 2-1-1 鋰離子的工作原理------------------------------------4 2-1-2 鋰離子電池的理論電容量------------------------------6 2-1-3 鋰離子電池陰極材料簡介------------------------------7 2-2 鋰離子電池陰極材料O-LiMnO2的合成方法-----------------12 2-2-1 固態反應法(solid-state reation)-------------------------12 2-2-2 乳膠乾燥法(emulsion drying mthod)---------------------13 2-2-3 溶膠-凝膠法(sol-gel process)---------------------------13 2-2-4 各製程對O-LiMnO2之性質相關比較--------------------21 2-3 斜方晶相LiMnO2(Orthorhombic LiMnO2)之晶體結構--------23 2-4 影響O-LiMnO2電化學行為的因素------------------------28 2-4-1粒徑的大小-----------------------------------------28 2-4-2 合成O-LiMnO2時結構中產生的疊差-------------------30 2-4-3 O-LiMnO2在充放電後產生的相變----------------------36 2-5電化學分析方法----------------------------------------39 2-5-1 交流阻抗法的簡介-----------------------------------39 2-5-2 等效電路-------------------------------------------43 2-5-3 電化學系統模擬-------------------------------------48 2-5-4 擴散阻抗-------------------------------------------54 2-5-5 交流阻抗圖譜---------------------------------------65 2-5-6 嵌入式材料的擴散係數-------------------------------70 2-5-7 實際電化學系統等效電路-----------------------------76 第三章 實驗方法---------------------------------------------77 3-1 實驗藥品----------------------------------------------77 3-2 陰極材料粉末之合成------------------------------------78 3-3 陰極材料粉末性質鑑定----------------------------------80 3-3-1 X光繞射分析---------------------------------------80 3-3-2 充放電測試-----------------------------------------80 3-3-3 交流阻抗測試---------------------------------------81 3-4 粉末形態及大小觀察------------------------------------82 第四章 結果與討論-------------------------------------------85 4-1 不同氣氛、溫度、持溫時間對合成O-LiMnO2的影響---------85 4-2 充放電性質分析及研磨與退火的影響----------------------96 4-3 交流阻抗的分析---------------------------------------112 第五章 結論-------------------------------------------------122 第六章 參考文獻--------------------------------------------124

    【1】W.D. Johnston, R.R. Heikes, D. Sestrich, J. Phys. Chem. Solids, 7, 1 (1958).
    【2】J.B. Goodenough, D.G. Wickham, W.J. Croft, J. Appl. Phys., 29, 382 (1958).
    【3】A.Manthiram, J.O.M., March, 49(3), p.43 (1997).
    【4】R.J. Gummow, D.C. Liles, M.M. Thackeray, Mat. Res. Bull., 28, p.1249 (1993).
    【5】尹邦躍, 奈米時代, p.69, 五南圖書.
    【6】L.A. de Picciotto, Mat. Res. Bull., 19, p.1497 (1984).
    【7】A. Manthiram, J.B. Goodenough, Can. J. Phys., 65, p.1309 (1987).
    【8】C.W. Jones, J.R. Dahn, Unpublished work.
    【9】G.. Dutta, A. Manthiram, J.B. Goodenough, J. Solid State Chem., 96, p.123 (1992).
    【10】A. Hirano, Solid State Ionics, 78, p.123 (1995).
    【11】楊模樺, 工業材料157期, p.144 (2000).
    【12】M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, Mat. Res. Bull., 18, p.461 (1983).
    【13】J.M. Taracon, D. Guyomard, J. Electrochem. Soc., 138, p.2864 (1991).
    【14】I.J. Davidson, R.S. McMillan, J.J. Murray, J.E. Greenan, J. Power Source, 54, p232 (1995).
    【15】L. Croguennec, P. Deniard, R. Brec, A. Lecerf, J. Mater. Chem. , 5, p1919 (1995).
    【16】L. Croguennec, P. Deniard, R. Brec, J. Electrochem. Soc., 144, p3323 (1997).
    【17】L. Croguennec, P. Deniard, R. Brec, A. Lecerf, J. Mater. Chem., 7, p511
    (1997).
    【18】Y.-I. Jang, B. Huang, H. Wang, D.R. Sadoway, Y.-M. Chiang, J. Electrochem. Soc. , 146, p3217 (1999)
    【19】Y.-I. Jang, Y.-M. Chiang, Solid State Ionics, 130, p53 (2000).
    【20】Y.-I. Jang, W.D. Moorehead, Y.-M. Chiang, Solid State Ionics, 149, p201 (2000).
    【21】Y.-I. Jang, F.C. Chou, B. Huang, D.R. Sadoway, Y.-M. Chiang, J. Phy. Chem. Solids, 64, p2525 (2003).
    【22】Z.P. Guo, G..X. Wang, K. Konstantinov, H.K. Liu, S.X. Dou, J. Alloy and Compounds, 346, p255 (2002).
    【23】Y.-S. Lee, Chem. Letters, p1228 (2002).
    【24】S.-T. Myung, S. Komaba, N. Kumagai, Chem. Letters, p574 (2001).
    【25】S.-T. Myung, S. Komaba, N. Kumagai, Solid State Ionics, 150, p199 (2002).
    【26】J.-M. Kim, H.-T. Chung, J. Power Sources, 115, p125 (2003).
    【27】M.A. Aegerter[Ed.], Sol-gel : Science and Technology : Proceedings of Winter School on Glasses and Ceramics from Gels, Brazil, World Scientific, Singapore, (1989).
    【28】吳尚恩, “以檸檬酸法製備鋰離子電池陰極材料-LiMn2O4之合成機構”, 國立成功大學材料及工程學系碩士論文 (2002).
    【29】林志豪, “鋁、鎳添加物對鋰離子電池陰極材料-LiMn2O4電性及電化學性質之影響”, 國立成功大學材料及工程學系碩士論文 (2003).
    【30】W. Liu, G..C. Farrington, J. Electrochem. Soc., 143, p879, (1996).
    【31】T. Ohzuku, A. Ueda, T. Hirai, Chem. Express, 7, p193 (1992).
    【32】J.N. Reimers, E.W. Fuller, E. Rossen, J.R. Dahn, J. Electrochem. Soc., 140,p3396 (1993).
    【33】I. Koetschau, M.N. Richard, J.R. Dahn, J. Electrochem. Soc. 142, p2906 (1995).
    【34】Z.P. Guo, K. Konstantinov, G.X. Wang, H.K. Liu, S.X. Dou, J. Power Source, 119~121, p221 (2003).
    【35】C.-H. Lu, H.-C. Wang, J. the European Ceramic Soc., 24, p717 (2004).
    【36】S.K. Mishra, G. Ceder, Physical Review B, 59, p6120 (1999).
    【37】A.R. West, “Solid State Chemistry and Its Applications”, John Wiley & Sons, New York, 310
    【38】M.G.S.R. Thomas, P.G. Bruce, J. B. Goodenough, Solid State Ionics, 57, p13 (1985).
    【39】P.G. Bruce, A Lisowska-Oleksian, M. Y. Saidi, C. A. Vincent, Solid State Ionics, 57, p353 (1992).
    【40】W. Tang, H. Kanoh, K. Ooi, J. Solid state Chem., 142, p19(1999).
    【41】C.A. Huang, S.J. Chen, G.C. Tu, J. Mater. Science and Eng, 32, p1 (2000).
    【42】J.G. Webster, “Electrical Impedance Tomography”, Adm Hilger, Bristol (1990).
    【43】“Basics on AC Impedance Measurements”, Applicantion Note AC-l.Available upon request from EG&G Princeton Applied Research, Electrochemical Instruments Division.
    【44】C. Ho, I.D. Raistrick, R.A. Huggins, J. Electrochem. Soc., vol.127, no.2, 343 (1980).
    【45】Bard and Faulkner, “Electrochemical Methods, Fundamentals and Applications”, Wiley (2000).
    【46】P.G. Bruce, Solid State Electrochemistry, p252(1995).
    【47】J.R. Macdonald, “Impedance Spectroscopy”, p78(1987).
    【48】D.R. Franceschetti, J.R. Macdonald, J. Electroanal. Chem., 101, p307(1979).
    【49】I.D. Raistrick, R.A. Huggins, Solid State Ionics, 7, p213(1982).
    【50】R.D. Armstrong, B. Lindholm, M.Sharp, ibid, 202, p69(1986).
    【51】R. Cabanel, G. Barral, J. -P. Diard, B. Le Gorrec, C.Montella, J. of Applied electrochem., 23, p93(1993).
    【52】B.E. Warren, “X-ray Diffraction”, p251(1989).
    【53】R.J. Gummow, M.M. Thackeray, J. Electrochem. Soc., 141, p1178(1994).
    【54】M. Kötschau, J.R. Dahn, J. Electrochem. Soc., 145, p2672(1998).
    【55】M.M. Thackeray, Prog. Solid State Chem., 25, p1(1997).

    下載圖示 校內:2006-07-25公開
    校外:2006-07-25公開
    QR CODE