簡易檢索 / 詳目顯示

研究生: 吳孟采
Wu, Meng-Tsai
論文名稱: 利用小片段干擾核苷酸引發之核苷酸干擾現象抑制腸病毒71型的感染
Inhibition of enterovirus 71 infection by small interfering RNA-mediated RNA interference
指導教授: 張文粲
Chang, Wen-Tsan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學研究所
Department of Biochemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 86
中文關鍵詞: 小干擾型RNA第三型RNA聚合酶RNA干擾現象腸病毒71型
外文關鍵詞: enterovirus 71, RNA interference, RNA polymerase III, small interfering RNAs
相關次數: 點閱:141下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小干擾型RNA(small interfering RNAs, siRNAs)所引發的RNA干擾現象是一種強而有力將目標基因沉默的方法。相關文獻指出,在哺乳動物細胞中以H1與U6 promoter所轉錄的siRNAs可有效抑制基因表現,且不會引起抗病毒反應。我們分別建構人類U6、H1 promoters與老鼠U6、H1 promoters用來驅動正義與反義小單股RNA、小雙股RNA與小髮夾型RNA四種不同結構的小RNA分子,以螢光酵素基因為標定序列,藉由量化的數值來觀察與比較四種promoters轉錄出來的四種小分子RNA:小髮夾型RNA與小雙股型RNA﹔正義與反義單股RNA,抑制基因表現上的差異。由結果知道,正義與反義小單股RNA無法有效抑制基因表現,小雙股RNA與小髮夾型RNA可以抑制基因表現,其中又以小髮夾型RNA抑制效果最明顯,然而,我們無法在luciferase 量化數值上看出四種promoter在調控轉錄上的差異。
    腸病毒71型(Enterovirus 71, EV71)分類上屬小RNA病毒屬腸病毒種,在1969年加州腦炎嬰兒病例中首次被分離出來後,EV71被認為是造成,手、足、口病( hand、 foot、mouth disease-HFMD),與一些地區性腦脊髓炎(encephalomyelitis)的主因,1998年台灣爆發大規模流行,超過90000個案例被報導出來,其中有55個病童死於腦中樞神經系統的病變。在腸病毒的治療上應首重於防止腸病毒的感染,本實驗室企圖以siRNA所引起的RNAi現象來抑制腸病毒71型的感染,首先,我們以Taiwan/4643腸病毒分離株為研究模型,由實驗結果可知si-EV71-2與si-EV71-3的siRNA表現質體可以抑制腸病毒分離株Taiwan/4643的感染,進一步將si-EV71-2與si-EV71-3siRNA表現框架連接一起,發現可以更有效抑制腸病毒感染。本實驗室已鑑別幾個不同分離株5 端不轉譯區,比較DNA序列上的差異,發現有6 個序列上的差異,然而這些差異無法有效的和不同分離株間毒性的差異作連接。

    RNA interference is a sequence-specific posttranscriptional gene silencing mechanism. In mammalian cells, U6 and H1 promoters have been used to produce small interfering RNA. We have developed human and mouse RNA polymerase III H1, U6 promoters to drive shRNA, siRNA duplex, sense RNA and antisense RNA expression. Using pGL3-control as target vector, we examined the effect of firefly luciferase gene expression and compared the suppression efficiency by these small RNAs. We found that antisense RNA and sense RNA weakly inhibit gene expression, however siRNA duplex and shRNA efficiently suppress gene expression in SK-N-SH cell line. The transcriptional activities between these four Pol III promoters are not significantly different in SK-N-SH cell line.
    Since its discovery in 1969, EV71 has been recognized as a frequent cause of epidemics of hand-foot-mouth disease (HFMD) associated with severel neurological sequelae in a small proportion of cases. In 1998, the largest EV71 outbreak in Taiwan, more than 90000 children with HFMD have been reported, and at least 55 died, suggesting neurovirulence of the pathogen. We focus on prevention of EV71 infection, and use small interfering RNA to inhibit EV71 infection. We found two siRNA target site could inhibit the Taiwan/4643 EV71 isolate infection. The inhibition of viral infection was even more efficient when two siRNA expression cassettes were linked together . Single nucleotide changes within the poliovirus IRES have been found to result in large alterations in neurovirulence. We compared the sequence of 5´NTR from three EV71 isolates, and found that there are six nucleotides different. However, these differences have no significant effect on the different neurovirulence between EV 71 isolates.

    目錄 一. 序論: 1A.核苷酸干擾現象與沉默基因 1 1B.以DNA 質體表現siRNA 5 1C. RNAi 技術的應用與siRNAs載體的開發 7 2A.腸病毒概論 8 2B.腸病毒71 型流行病學與臨床症狀 10 2C.腦神經毒性 11 二. 實驗源起 1.siRNA 表現質體與小分子RNA 13 2.以siRNA 所引起的RNAi 現象抑制腸病毒感染 14 三. 材料與方法 A.材料 15 B.方法 一. 細胞的培養程序 20 二. 基本分子生物技術 21 三. 分析不同腸病毒分離株在5`NTR 序列上的差異26 四. 分析不同腸病毒分離株5`NTR 區域在調控轉譯 活性上的差異 28 五. EV71siRNA 表現質體的構築 30 六. 以siRNA 表現質體抑制腸病毒感染 30 七. 建立持續表現siRNA 的穩定細胞(stable cell line) 31 八. 分離人類與老鼠的第三型RNA聚合酶驅動子 32 九. 比較不同長度的siRNA 序列在抑制基因表現上的差異 34 十. 不同驅動子(promoter) 在調控轉錄能力上的分析與比較 34 四.結果 一. 以PCR 方式將人類與老鼠U6 snRNA 、RNAse P H1 promoter 分離出來,構築成siRNA 表現質體 36 二. 以分離出來的人類與老鼠U6 snRNA 、RNAse P H1 promoters 轉錄的小分子RNA 抑制螢火蟲冷光基因的表現 36 三. 利用人類H1 promoter 轉錄26nt 與19nt siRNAs 抑制螢火蟲冷光基因表現,並比較抑制效果的差異 37 四. 比較人類與老鼠U6 snRNA 、RNAse P H1 promoter 所轉錄shRNA 結構在抑制基因表現上的差異 37 五. 不同siRNA 表現質體抑制Taiwan/4643 感染的情形 38 六. 經Taiwan/4643 感染後24 小時,以trypan blue 染色,計數細胞存活率 39 七. 以Taiwan/4643 感染持續表現si-EV71-2 的穩定細胞(stable cell line) 39 八. si-EV71-2-neo-6 與vector-1 細胞株Taiwan/4643 感染後24 小時,以trypan blue 染色,觀察細胞存活率 40 九. 不同腸病毒71 型分離株在5´NTR 序列的差異 40 十. 不同腸病毒71 型分離株在5´NTR 在調控轉錄活性上的差異 40 五. 討論 42 六. 參考文獻 47 附圖 52 附表 75 附圖與附表 Fig.1 RNA 干擾現象與以後轉錄調控機制將基因沉默的作用模型 52 Fig.2 內生性小片段干擾核苷酸( Endogenous expression of siRNAs) 53 Fig.3 U6 小核內RNA (U6 snRNA) 驅動子 54 Fig.4 RNA 水解酶P H1 ( RNAse P H1) 驅動子 55 Fig.5 構築siRNAs 表現質體 56 Fig.6 以U6 promoters 轉錄的siRNAs 抑制luciferase 基因表現 57 Fig.7 H1 promoter 轉錄的siRNAs 抑制luciferase 基因表現情形 58 Fig.8 兩種luciferase 冷光基因siRNA 標定序列與對luciferase基因抑制的情形 59 Fig.9 以不同promoters 轉錄的shRNA 抑制luciferase 基因表現的差異 60 Fig.10 以Taiwan/4643 感染SK-N-SH 細胞 61 Fig.11 siRNAs 對腸病毒分離株-Taiwan/4643 感染SK-N-SH 細胞的影響 62 Fig.12 siRNAs 對腸病毒分離株-Taiwan/4643 感染SK-N-SH 細胞的影響 63 Fig.13 siRNAs 對腸病毒分離株-Taiwan/4643 感染SK-N-SH 細胞的影響 64 Fig.14 siRNAs 對腸病毒分離株-Taiwan/4643 感染SK-N-SH 細胞的影響 65 Fig.15 siRNAs 對腸病毒分離株-Taiwan/4643 感染SK-N-SH 細胞的影響 66 Fig.16 siRNAs 對腸病毒分離株-Taiwan/4643 感染SK-N-SH 細胞的影響 67 Fig. 17 SK-N-SH 細胞株經腸病毒分離株Taiwan/4643 感染24 小時後細胞存活率 68 Fig.18 以腸病毒分離株-Taiwan/4643 感染vector-neo-1 與si-EV71-2-neo-6 細胞株 69 Fig.19 以腸病毒分離株-Taiwan/4643 感染vector-neo-1 與si-EV71-2-neo-6 細胞株 70 Fig.20 vector-neo-1 與si-EV71-2-neo-6 細胞株感染24 小時後細胞存活率 71 Fig.21 腸病毒71 型原始分離株( BrCr ) 5 ’端不轉譯區的二級結構模型 72 Fig.22 腸病毒71 型分離株在5´端不轉錄區序列比對結果 73 Fig.23 不同腸病毒分離株5´端不轉錄區所調控轉譯的luciferase 活性比較 74 Table.1 SK-N-SH 細胞經由不同處理的情形 75

    1.Ame JC, Schreiber V, Fraulob V, Dolle P, de Murcia G, Niedergang CP. A bidirectional promoter connects the poly(ADP-ribose) polymerase 2 (PARP-2) gene to the gene for RNase P RNA. structure and expression of the mouse PARP-2 gene. J Biol Chem. 276: 11092-9. 2001.
    2.Banerjee D, Slack F. Control of developmental timing by small temporal RNAs: a paradigm for RNA-mediated regulation of gene expression. Bioessays. 24: 119-29. 2002.
    3.Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 409: 363-6. 2001.
    4.Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 296: 550-3. 2002a.
    5.Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell. 2: 243-7. 2002b.
    6.Chu PY, Lin KH, Hwang KP, Chou LC, Wang CF, Shih SR, Wang JR, Shimada Y, Ishiko H. Molecular epidemiology of enterovirus 71 in Taiwan. Arch Virol. 146: 589-600. 2001
    7.Cullen BR. RNA interference: antiviral defense and genetic tool. Nat Immunol. 3: 597-9. 2002.
    8.Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs. Genes Dev. 17: 438-42. 2003.
    9.Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol. 4: 457-67. 2003.
    10.Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15: 188-200. 2001a.
    11.Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411: 494-8. 2001b.
    12.Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20: 6877-88. 2001c.
    13.Elbashir SM, Harborth J, Weber K, Tuschl T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods. 26: 199-213. 2002.
    14.Filman DJ, Syed R, Chow M, Macadam AJ, Minor PD, Hogle JM. Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J. 8: 1567-79. 1989.
    15.Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature. 418: 430-4. 2002.
    16.Goomer RS, Kunkel GR. The transcriptional start site for a human U6 small nuclear RNA gene is dictated by a compound promoter element consisting of the PSE and the TATA box. Nucleic Acids Res. 20: 4903-12. 1992.
    17.Good PD, Krikos AJ, Li SX, Bertrand E, Lee NS, Giver L, Ellington A, Zaia JA, Rossi JJ, Engelke DR. Expression of small, therapeutic RNAs in human cell nuclei. Gene Ther. 4: 45-54. 1997.
    18.Gutierrez AL, Denova-Ocampo M, Racaniello VR, del Angel RM. Attenuating mutations in the poliovirus 5' untranslated region alter its interaction with polypyrimidine tract-binding protein. J Virol. 71: 3826-33. 1997.
    19.Hannon GJ. RNA interference. 418: 244-51. 2002.
    20.Hashizume S, Nomoto A. Host range phenotype induced by mutations in the internal ribosomal entry site of poliovirus RNA. J Virol. 71:1-8. 1997.
    21.Hutvagner G, Zamore PD. RNAi: nature abhors a double-strand. Curr Opin Genet Dev. 12: 225-32. 2002.
    22.Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature. 418: 435-8. 2002.
    23.Kawasaki H, Taira K. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res. 31: 700-7.2003 a
    24.Kawasaki H, Suyama E, Iyo M, Taira K. siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res. 31: 981-7. 2003 b
    25.La Monica N, Almond JW, Racaniello VR. A mouse model for poliovirus neurovirulence identifies mutations that attenuate the virus for humans. J Virol. 61: 2917-20. 1987.
    26.Laporte J, Malet I, Andrieu T, Thibault V, Toulme JJ, Wychowski C, Pawlotsky JM, Huraux JM, Agut H, Cahour A. Comparative analysis of translation efficiencies of hepatitis C virus 5' untranslated regions among intraindividual quasispecies present in chronic infection: opposite behaviors depending on cell type. J Virol. 74: 10827-33. 2000.
    27.Lin TY, Twu SJ, Ho MS, Chang LY, Lee CY. Enterovirus 71 outbreaks, Taiwan: occurrence and recognition. Emerg Infect Dis. 9: 291-3. 2003.
    28.McCright IJ, Tsunoda I, Whitby FG, Fujinami RS. Theiler's viruses with mutations in loop I of VP1 lead to altered tropism and pathogenesis. J Virol. 73: 2814-24. 1999.
    29.McMinn PC. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev. 26: 91-107. 2002.
    30.Minks MA, West DK, Benvin S, Baglioni C. Structural requirements of double-stranded RNA for the activation of 2',5'-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells. J. Biol. Chem. 254: 10180 - 10183.1979.
    31.Myslinski E, Ame JC, Krol A, Carbon P. An unusually compact external promoter for RNA polymerase III transcription of the human H1 RNA gene. Nucleic Acids Res. 29: 2502-9. 2001.
    32.Nishikura K. A short primer on RNAi: RNA-directed RNA polymerase acts as a key catalyst. Cell. 16: 415-8. 2001.
    33.Paddison PJ, Caudy AA, Hannon GJ. Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci U S A. 99: 1443-8. 2002a.
    34.Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16: 948-58. 2002b.
    35.Paddison PJ, Hannon GJ. RNA interference: the new somatic cell genetics? Cancer Cell. 2: 17-23. 2002c.
    36.Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 34: 320-5. 1988.
    37.Pilipenko EV, Blinov VM, Romanova LI, Sinyakov AN, Maslova SV, Agol VI. Conserved structural domains in the 5'-untranslated region of picornaviral genomes: an analysis of the segment controlling translation and neurovirulence. Virology. 168: 201-9. 1989.
    38.Salo RJ, Cliver DO. Effect of acid pH, salts, and temperature on the infectivity and physical integrity of enteroviruses. Arch Virol. 52: 269-82. 1976.
    39.Schmidt NJ, Lennette EH, and Ho HH. An apparently new enterovirus isolated from patients with disease of the central nervous system. J. Infect. Dis, 129: 304-309. 1974.
    40.Shih SR, Ho MS, Lin KH, Wu SL, Chen YT, Wu CN, Lin TY, Chang LY, Tsao KC, Ning HC, Chang PY, Jung SM, Hsueh C, Chang KS.Genetic analysis of enterovirus 71 isolated from fatal and non-fatal cases of hand, foot and mouth disease during an epidemic in Taiwan, 1998. Virus Res. 68: 27-36. 2000.
    41.Shiroki K, Ishii T, Aoki T, Ota Y, Yang WX, Komatsu T, Ami Y, Arita M, Abe S,
    42.Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, Weinberg RA, Novina CD. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA. 9: 493-501. 2003.
    43.Tuschl T. Expanding small RNA interference. Nat Biotechnol. 20: 446-8. 2002.
    44.Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol. 2: 70-5. 2000.
    45.Wien MW, Curry S, Filman DJ, Hogle JM. Structural studies of poliovirus mutants that overcome receptor defects. Nat Struct Biol. 4: 666-74. 1997.
    46.Yan JJ, Wang JR, Liu CC, Yang HB, Su IJ. An outbreak of enterovirus 71 infection in Taiwan 1998: a comprehensive pathological, virological, and molecular study on a case of fulminant encephalitis. J Clin Virol. 17: 13-22. 2000.
    47.Yan JJ, Su IJ, Chen PF, Liu CC, Yu CK, Wang JR. Complete genome analysis of enterovirus 71 isolated from an outbreak in Taiwan and rapid identification of enterovirus 71 and coxsackievirus A16 by RT-PCR. J Med Virol. 65: 331-9. 2001
    48.Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A. 99: 6047-52. 2002.
    49.Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell..101:25-33.2000.
    50.Zell R, Stelzner A. Application of genome sequence information to the classification of bovine enteroviruses: the importance of 5'- and 3'-nontranslated regions. Virus Res. 51: 213-29. 1997.
    51.陳怡君. 腸病毒71型之小鼠餵食感染模式.國立成功大學微生物及免疫學研究所碩士論文. 2002.
    52.吳正男.腸病毒71型隻病毒特性與感染機制研究及應用.國立國防醫學大學基礎醫學研究所博士班論文. 2002.

    下載圖示 校內:立即公開
    校外:2003-08-19公開
    QR CODE