| 研究生: |
陳碩彥 Chen, Shuo-Yan |
|---|---|
| 論文名稱: |
壓電複合材料的一維聲子晶體波傳與應用 Wave propagation in a one-dimensional phononic crystal of piezoelectric composite materials and its application |
| 指導教授: |
王清正
Wang, Ching-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造工程研究所 Institute of Manufacturing Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 聲子晶體 、壓電複合材料 、表面聲波 |
| 外文關鍵詞: | Phononic crystal, Piezoelectric composite materials, Surface Acoustic Wave (SAW) |
| 相關次數: | 點閱:164 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前壓電聲子晶體於一維、二維與三維研究上,能帶結果分析方法需要代入表面波條件與邊界條件計算,本研究壓電聲子晶體頻率的計算方式與徹體波頻率計算方式相似,可以直接計算出頻率。另外在壓電聲子晶體以壓電材料的本構方程式(Constitutive Equations),並結合壓電材料的致動器方程式計算。本研究以兩種主要方程式個別計算;第一種為表面波波動方程式,視無電極的壓電材料為普通材料,分析此聲子晶體複合材料的表面波頻帶;第二種計算為壓電本構方程式結合致動器方程式,分別在壓電材料的表面波頻率代入方程式預測相關位移與電位移後,由逆壓電效應轉換至外加電場調變,以達到壓電材料元件應用,並比較分析結果是否差異性。
本旨研究創新計算方法在一維方向上的聲子晶體(Phononic crystal)波傳的表面聲波(Surface Acoustic Wave, SAW)頻帶(Band gaps)。壓電材料(Piezoelectric Composite)位移與電位移轉換後,藉由此方式得到外加電場對表面聲波的調變。第一個主要為創新的理論分析,第二個為預測相關位移量與電位移量轉換成外加電場的調變影響,並達成設計一維表面聲波的應用。
To date, several piezoelectric phononic crystals research have been described, the band gaps analysis should be into the surface acoustic wave (SAW) condition and boundary condition. In this research, we calculate the frequency of piezoelectric phononic crystals by using the same way of calculating the bulk acoustic wave. In addition, we combine the piezoelectric material constitutive equation and piezoelectric actuator equation to calculate the displacement and electric displacement of piezoelectric phononic crystals.
There are two main types of equations that we calculate individually; the first formula is the equation of SAW. We assumed that the electrode-free piezoelectric are the ordinary materials, and then analysis these materials’ phononic crystal bands of SAW. Second formula is the combination equation of piezoelectric constitutive and actuator. We take the SAW frequency of piezoelectric material into the equation, and the predict the displacement and electric displacement. After the calculation, we modulate the frequency by electric field and take this method for piezoelectric material components applications.
This study creates a novel phenomenon of SAW frequency band gaps of phononic crystals. By using this means, we could obtain the whole new theoretical analysis method and apply it for piezoelectric materials.
[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters.58,2059(1987)
[2] S. Tamura, D. C. Hurley, and J. P. Wolfe, “Acoustic-phonon propagation in superlattics,” Physical Review B38,1427(1988)
[3] H.L. Stormer,M.A.Chin,A.C. Gossard, and W.Wieg,amm,”Selective Transmission of High-Frequency Phonons by a Superlattice: The “Dielectric” Phonon Filter,” Physical Review Letters.43,2012(1979)
[4] Yukihiro Tanaka and Shin-ichiro Tamura, (1999) “Surface acoustic waves in two-dimensional elastic structures,” Physical Review B 58(12) 7958-7965
[5] Yukihiro Tanaka and Shin-ichiro Tamura, (1999) “Acoustic stop bands of surface and bulk modes in two-dimensional phononic lattices consisting of aluminum and a polymer,” Physical Review B 60(19)13294-13297
[6] Yukihiro Tanak, Yoshinobu Tomoyasu, and Shin-ichiro Tamura, (2000)”Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch,” Physical Review B 62(11),7387-7392
[7] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani,”Acoustic Band Structure of Periodic Elastic Composites”, Physical Review Letters, Vol. 71, No.13,pp.2022-2025,(1993).
[8] M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani,(1994)Theory of acoustic band structure of periodic elastic composites,” Physical Review B 49(4), 2313-2322
[9] M. S. Kushwaha, P. Halevi,(1994)”Band-gap enginerring in periodic elastic composites,” Applied physics letters. 64(9),1085-1087
[10] K. Chen, and X. Wang, “Localized folded acoustic phonon modes in coupled superlattices with structure defects,” Physical Review B 64,12057(1999)
[11] J.S. Jensen, “phononic Band Gaps and Vibrations on One and Two Dimensional Mass-Spring Structures”,J.Sound and Vibration, Vol.266, No.5,pp.1053-1078,2003.
[12] M. Wilm, A. Khelif, S. Ballandras, V.Laude, and B. Djafari-Rouhani, ”Out-of-Plane Propagation of Elastic Waves in Two-Dimensional Phononic Band-Gap Materials”, Physical Review E, Vol.67, No.6, pp.065602-1-4, (2003)
[13] Zhilin Hou, Xiujun Fu, and Youyan Liu, “Acoustic Wave in a Two-Dimensional Composite Medium with Anisotropic Inclusions”, Physical Review A. Vol.317,No.1-2,pp. 127-134,(2003)
[14] F. R. Montero de Espinosa, E. Jimenez, and M. Torres,”Ultrasonic Band Gap in a Periodic Two Dimensional Composite”, Physical Review Letters, Vol. 80, No.6, pp.1208-1211, (1998)
[15] F. R. Montero de Espinosa, E. Jimenez, and M. Torres,”Ultrasonic Band Gap in a Periodic Two Dimensional Composite”, Physical Review Letters, Vol. 80, No.6, pp.1208-1211,(1998)
[16] D. Caballero, J. Sanchez-Dehesa, C. Rubio, R. Matinez-Sala, J.V. Sanchez-Perez, F. Meseguer, and J. Linares, “High-frequency dynamics of wave localization,” Physical Review E 60, R6313-R6315(1999)
[17] Y. Tanaka, Y. Tomoyasu, and S. Tamura, “Band structure of acoustic waves in phononic lattices: Two Dimensional composites with large acoustic mismatch,” Physical Review B 62, 7387(2000)
[18] C. Goffaux and J.P. Vigneron, “Theoretical study of a tunable phononic band gap system,” Physical Review B 64, 075118 (2001)
[19] F. Wu, Z. Liu, and Y. Liu, “Acoustic band gaps created by rotating square rods in a two-dimensional lattice,” Physical Review E 66, 046628 (2002)
[20] Z. Liu, C. T. Chan, P. Sheng, and A. Modinos, “Elastic wave scattering by periodic structures of spherical objects: Theory and experiment,” Physical Review B 62, 2446 (2000)
[21] J. O. Vasseur, P. A. Deymier, B . Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost,“Experimental and Theoretical Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Solid Phononic Crystals”, Physical Review Letters, Vol. 86, No. 14, pp.3012-3015,(2001)
[22] J. O. Vasseur, P. A. Deymier, A.Khelif,Ph.Lambin,B.Djafari-Rouhani,A. Akjouj, L. Dobrzynski, N. Fettouhi, and J. Zemmouri,“Phononic Crystal with Low Filling Fraction and Absolute Acoustic Band Gap in the Audible Frequency Range:A theoretical and Experimental Study”, Physical Review E, Vol.65, No.5, pp.056608, (2002)
[23] S. Benchabane, A. Khelif, J.-Y. Rauch, L. Robert, and V. Laude,“ Evidence for complete surface wave band gap in a piezoelectric phononic crystal”, Physical Review E 73, 065601 R(2006)
[24] M. Hammouchi, E. H. Boudouti, and A. Nougaoui, “Acoustic waves in finite superlattices: Influence of buffer layers,” Physical Review B 59, 1999 (1998)
[25] A. Bousfia, E. H. Boudouti, and B. Djafari-Rouhani,“ Omnidirectional phononic reflection and selective transmission in one-dimensional acoustic layered structures,” Surface Science 482 1175 (2001)
[26] 周卓明,壓電力學(Piezoelectricity Mechanics),全華科技出版社,2004。
[27] Lisa Dhar and John A. Rogers. “High frequency one-dimensional phononic crystal characterizedwith a picosecond transient grating photoacoustic technique”, Applied physics letters Vol. 77, No. 9. (2000)
[28] Weiyi Zhang, Zhenxing Liu, and Zhenlin Wang. “Band structures and transmission spectra of piezoelectric superlattices”, Physical review B 71, 195114 (2005)
[29] Xin-Ye Zou, Qian Chen, and Jian-Chun Cheng,”the Band Gaps of Plate-Mode Waves in One-Dimensional Piezoelectric Composite Plates: Polarizations and Boundary Conditions”,IEEE, Vol. 54, No. 7. (2007)
[30] Jian Gao, Xin-Ye Zou, and Jian-Chun Cheng. “Band gaps of lower-order Lamb wave in thin plate with one-dimensionalphononic crystal layer: Effect of substrate”, Applied physics letters 92, 023510 (2008)
[31] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Historical Trends in Lake and Rice Ice Cover in the Northern Hemisphere,” Science 289 1734 (2000)
[32] L. Sanchis, A. Hakansson, and J. Sanchez,“Acoustic interferometers based on two-dimensional arrays of rigid cylinders in air,” Physical Review B 67, 035422 (2003)
[33] V. Sanchez, D. Caballerl, R. Matrinez, C. Rubio, J. Sanchez, F. Meseguer, J. Linares, and F. Galvez, “Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders,” Physical Review Letters. 80, 5325 (1998)
[34] I. E. Psarobas, N. Stefanou, and A. Modinos, “Scattering of elastic waves by periodic arrays of spherical bodies,” Physical Review B 62, 278 (2000)
[35] C. Goffaux and J. Sanchez-Dehesa, “Two-dimensional phononic crystals studied using a variational method: Application to lattices of locally resonant materials,” Physical Review B 67, 144301 (2003)
[36] H. Funakubo, “Shape Memory Alloys, Gordon and Breach,” New York. (1987)
[37] M. Ruzzene, and A. Baz, “Control of Wave Propagation in Periodic Composite Rods Using Shape Memory Inserts,’’ Journal of Vibration and Acoustics, APRIL 122, 151 (2000)
[38] E. B. Priestley, Peter J. Wojtowicz, and P. Sheng, “Introduction to Liquid Crystals,” Plenum Press, New York and Londom. pp.1-4 (1974)
[39] Rayleigh, L.,“On waves propagating along the plane surface of an elastic solid.” Proc. London Math. Soc., 1885. 17: p. 4-11.
[40] B.A.AULD,“Acoustic Fields and Waves in Solids,” Vol. 1. New York: Wiley. (1973)
[41] Mason, W.P., “Physical acoustics :principles and methods,” Vol. 9. New York 35-126. (1964)
[42] Royer, D., “Elastic waves in solids :applications to signal processing,” Chichester,New York J. Wiley. (1980)
[43] B. A Auld,”Acoustic Fields and Waves in Solids,” Vol. 2. Robert E. Kreiger, Malabar, Florida. (1990)
[44] Sung-Choong Woo, Ki Hoon Park, Nam Seo Goo, “Influences of dome height and stored elastic energy on the actuating performance of a plate-type piezoelectric composite actuator” Sensors and Actuators A 137 (2007)