| 研究生: |
陳詠霖 Chen, Yung-Lin |
|---|---|
| 論文名稱: |
優化低損耗彎曲波導的環形調製器 Microring Modulator with Optimized Low-Loss Bent Waveguide |
| 指導教授: |
曾碩彥
Tseng, Shuo-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 矽光子 、環形調製器 、電光調製器 、光互聯 |
| 外文關鍵詞: | Silicon Photonics, Microring Modulator, Electro-optic Modulator, Optical Interconnect |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著資料中心對高速、低功耗光互連需求日益提升,矽光子環形調製器(Microring Modulator, MRM)以其體積小、低功耗與 CMOS 相容性,成為未來光電整合的重要元件。然而元件尺寸縮小易導致彎曲損耗與模態不匹配等問題。本研究旨在設計一款極小尺寸且高效能的環形調製器,以突破元件微縮過程中的瓶頸。
本論文提出以三次 Bézier 曲線優化環形波導內圈,外圈則維持圓形以支持回音壁模態,有效降低彎曲損耗並提升模態穩定性。此外,在調製區採用優化 L 型 PN接面設計,增加光場與空乏區交疊,提高調製效率。研究透過 Lumerical FDTD 與DEVICE 軟體進行光電模擬,並利用粒子群演算法(PSO)最佳化結構參數,同時使用 ADS 軟體分析元件 RC 頻寬,最終於 INTERCONNECT 驗證訊號完整度。
結果顯示,所設計之環形調製器在半徑僅 2.5 μm 下,具有 44.87 nm 的自由光譜範圍(FSR),在 0至–4 V 偏壓下可達 12 dB 以上的動態消光比、共振波長偏移 145.2 pm/V,RC 頻寬與光子壽命頻寬分別達 31.7 GHz 與 67.03 GHz,總調製頻寬達 28.63 GHz;於傳輸速率 10 至 50 Gbps 下之眼圖交叉比約 56%,展現優高速調製潛力。
本研究提出之微環調製器設計與驗證流程,展示矽光子元件於極小尺寸下的高效能與低功耗高速傳輸潛力,未來可望應用於高密度波分多工(WDM)系統與高速光收發器,推動光電共封裝及光互連技術發展。
As data centers increasingly require high-speed, low-power optical interconnects, silicon photonic microring modulators (MRMs) have emerged as critical components due to their compact size, low power consumption, and compatibility with CMOS technology. However, reducing device dimensions often introduces challenges such as increased bending losses and mode mismatch. To address these issues, this research develops an ultra-compact, high-performance silicon photonic MRM.
The proposed device employs a cubic Bézier curve to optimize the inner waveguide geometry while maintaining a circular outer boundary to support whispering gallery modes, significantly reducing bending loss and improving mode stability. Additionally, an optimized L-shaped PN junction structure enhances the overlap between the optical mode and depletion region, increasing modulation efficiency. Optical and electrical simulations were performed using Lumerical FDTD, DEVICE, ADS software, and particle swarm optimization (PSO) for structural refinement, with final system-level validation conducted via INTERCONNECT.
Simulation results demonstrate that the designed MRM, with a radius of just 2.5 μm, achieves a free spectral range (FSR) of 44.87 nm, a dynamic extinction ratio greater than 12 dB, and a resonance wavelength shift of 145.2 pm/V under biases from 0 to–4 V. The device exhibits RC and photon lifetime bandwidths of 31.7 GHz and 67.03 GHz, respectively, with a total modulation bandwidth of 28.63 GHz. Eye-diagram analyses at data rates of 10 to 50 Gbps confirm excellent signal integrity, maintaining a stable eye-crossing ratio of approximately 56%. These results highlight the potential of the proposed MRM for future high-density wavelength-division multiplexing (WDM) and high-speed optical interconnect applications.
[1] Y. Wang, S. Wang, R. Parsons, A. Novick, V. Gopal, K. Jang, A. Rizzo, C.-P. Chiu, K. Hosseini, T. T. Hoang, S. Shumarayev, and K. Bergman, “Silicon photonics chip i/o for ultra high-bandwidth and energy-efficient die-to-die connectivity,”in Proceedings of the IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4, IEEE, 2024.
[2] S. Shekhar, W. Bogaerts, L. Chrostowski, J. E. Bowers, M. Hochberg, R. Soref, and B. J. Shastri, “Roadmapping the next generation of silicon photonics,” Nature Communications, vol. 15, no. 1, p. 751, 2024.
[3] K. Hosseini, E. Kok, S. Y. Shumarayev, C.-P. Chiu, A. Sarkar, A. Toda, Y. Ke, A. Chan, D. Jeong, M. Zhang, S. Raman, T. Tran, K. A. Singh, P. Bhargava, C. Zhang, H. Lu, R. Mahajan, X. Li, N. Deshpande, C. O’Keeffe, T. T. Hoang, U. Krishnamoorthy, C. Sun, R. Meade, V. Stojanovic, and M. Wade, “8 tbps co-packaged fpga and silicon photonics optical io,” in Optical Fiber Communication Conference (OFC), p. Th4A.2, Optical Society of America, 2021. Presented at OFC 2021.
[4] N. Margalit, C. Xiang, S. M. Bowers, A. Bjorlin, R. Blum, and J. E. Bowers, “Perspective on the future of silicon photonics and electronics,” Applied Physics Letters, vol. 118, no. 22, p. 220501, 2021.
[5] C. Xiong, D. M. Gill, J. E. Proesel, J. S. Orcutt, W. Haensch, and W. M. J. Green“Monolithic 56 gb/s silicon photonic pulse-amplitude modulation transmitter,”Optica, vol. 3, no. 10, pp. 1060–1065, 2016.
[6] Q. Liao, Y. Zhang, S. Ma, L. Wang, L. Li, G. Li, Z. Zhang, J. Liu, N. Wu, L. Liu, Y. Chen, X. Xiao, and N. Qi, “A 50-gb/s pam-4 silicon-photonic transmitter incorporating lumped-segment mzm, distributed cmos driver, and integrated cdr,” IEEE Journal of Solid-State Circuits, vol. 57, no. 3, pp. 767–780, 2022.
[7] Y. Zhang, H. Zhang, M. Li, P. Feng, L. Wang, X. Xiao, and S. Yu, “200 gbit/s optical pam4 modulation based on silicon microring modulator,” in Proceedings of the European Conference on Optical Communication (ECOC), pp. 1–4, 2020.
[8] M. Tan, J. Xu, S. Liu, J. Feng, H. Zhang, C. Yao, S. Chen, H. Guo, G. Han, Z. Wen, B. Chen, Y. He, X. Zheng, D. Ming, Y. Tu, Q. Fu, N. Qi, D. Li, L. Geng, S. Wen, F. Yang, H. He, F. Liu, H. Xue, Y. Wang, C. Qiu, G. Mi, Y. Li, T. Chang, M. Lai, L. Zhang, Q. Hao, and M. Qin, “Co-packaged optics (cpo): status, challenges, and solutions,”Frontiers of Optoelectronics, vol. 16, no. 1, pp. 1–40, 2023.
[9] H. Gevorgyan, A. Khilo, M. T. Wade, V. M. Stojanović, and M. A. Popović, “Miniature, highly sensitive MOSCAP ring modulators in co-optimized electronic-photonic CMOS,” Photonics Research, vol. 10, no. 1, pp. A1–A7, 2022.
[10] Y. Yuan, Y. Peng, W. V. Sorin, S. Cheung, Z. Huang, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A 5 × 200 Gbps microring modulator silicon chip empowered by two-segment Z-shape junctions,” Nature Communications, vol. 15, no. 1, p. 918, 2024.
[11] A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic microring modulators,” Optics Express, vol. 20, no. 28, pp. 29223–29236, 2012.
[12] M. Nikdast, Q. Cheng, and K. Bergman, “Universal design of waveguide bends in silicon-on-insulator photonics platform,” Journal of Lightwave Technology, vol. 37, no. 13, pp. 3044–3054, 2019.
[13] L. Vivien, F. Grillot, E. Cassan, D. Pascal, S. Lardenois, A. Lupu, S. Laval, M. Heitzmann, and J.-M. Fedeli, “Comparison between strip and rib soi microwaveguides for intra-chip light distribution,” Optical Materials, vol. 27, no. 5, pp. 756–762, 2005.
[14] L. Rayleigh, “The problem of the whispering gallery,” Philosophical Magazine, vol. 20, no. 120, pp. 1001–1004, 1910.
[15] K. J. Vahala, Optical Microcavities. World Scientific, 2004.
[16] F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nature Methods, vol. 5, no. 7, pp. 591–596, 2008.
[17] M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Physical Review Letters, vol. 85, no. 1, pp. 74–77, 2000.
[18] V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes: Part i: Basics,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 1, pp. 15–32, 2006.
[19] J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Optics Letters, vol. 22, no. 15, pp. 1129–1131, 1997.
[20] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity,” Physical Review Letters, vol. 93, no. 8, p. 083904, 2004.
[21] Q. Xu and B. Jalali, “Silicon microring resonators,” Laser & Photonics Reviews, vol. 6, no. 1, pp. 47–73, 2012.
[22] A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE Journal of Quantum Electronics, vol. 9, no. 9, pp. 919–933, 1973.
[23] E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell System Technical Journal, vol. 48, no. 7, pp. 2071–2102, 1969.
[24] D. G. Rabus and C. Sada, Integrated Ring Resonators: A Compendium. Springer, 2nd ed., 2020.
[25] W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Reviews, vol. 6, no. 1, pp. 47–73, 2012.
[26] G. T. Reed, G. T. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photonics, vol. 4, no. 8, pp. 518–526, 2010.
[27] C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in gaas lasers,” Journal of Applied Physics, vol. 52, no. 7, pp. 4457–4461, 1981.
[28] R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE Journal of Quantum Electronics, vol. 23, no. 1, pp. 123–129, 1987.
[29] J. D. Jackson, Classical Electrodynamics. New York: Wiley, 3 ed., 1999.
[30] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles. New York: McGraw-Hill Education, 4 ed., 2012.
[31] Y. Wu, H. He, R. Cao, and F. Liu, “The high‐efficiency co‐design and the measurement verification of high‐bandwidth silicon photonic microring modulator,” IET Optoelectronics, vol. 16, no. 6, pp. 234–241, 2022.
[32] D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method. IEEE Press Series on RF and Microwave Technology, New York: IEEE Press, 2000.
[33] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method. Boston: Artech House, 3 ed., 2005.
[34] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397–407, 2004.
[35] K. E. Parsopoulos and M. N. Vrahatis, Particle Swarm Optimization and Intelligence: Advances and Applications. Hershey, PA: Information Science Reference, 2010.
[36] K. Matsuzawa, K. Uchida, and A. Nishiyama, “A unified simulation of schottky and ohmic contacts,” IEEE Transactions on Electron Devices, vol. 47, pp. 103–108, Jan. 2000.
[37] F. Vogelbacher, S. Nevlacsil, M. Sagmeister, J. Kraft, K. Unterrainer, and R. Hainberger, “Analysis of silicon nitride partial euler waveguide bends,” Optics Express, vol. 27, no. 22, pp. 31394–31406, 2019.
[38] A. Syahriar, “Improved s-bend optical waveguide loss formula verified by experiments,” Scientific Reports, vol. 15, no. 1, p. 1338, 2025.
[39] 夏芷潔, “優化低損耗彎曲的緊湊型矽光子微環形共振器設計與模擬,” 碩士論文, 國立成功大學光電科學與工程學系, 2024. 臺灣博碩士論文知識加值系統.
[40] P. Bézier, Essai de définition numérique des courbes et des surfaces expérimentales: Contribution à l’étude des propriétés des courbes et des surfaces paramétriques polynomiales à coefficients vectoriels. PhD thesis, Université Pierre et Marie Curie (Paris VI), 1977.
[41] T. Y. L. Ang, J. R. Ong, S. T. Lim, C. E. Png, X. Guo, and H. Wang, “Versatile bezier bends for silicon photonics,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), p. s1869, Optica Publishing Group, 2017.
[42] Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Optics Express, vol. 16, no. 6, pp. 4309–4315, 2008.
[43] M. Shin, Y. Ban, B. M. Yu, M. H. Kim, J. Rhim, L. Zimmermann, and W. Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Transactions on Electron Devices, vol. 64, pp. 1140–1145, Mar. 2017. Article 7835671. 78