簡易檢索 / 詳目顯示

研究生: 劉宸瑋
Liu, Chen-Wei
論文名稱: 可攜式居家睡眠呼吸障礙監測系統
Portable Homecare Monitoring System for Sleep-related Breathing Disorders
指導教授: 梁勝富
Liang, Sheng-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 56
中文關鍵詞: 居家睡眠監控裝置多導睡眠記錄圖睡眠呼吸障礙
外文關鍵詞: homecare sleep monitoring device, PSG, sleep-related breathing disorders
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據美國國家睡眠基金會2012年的統計,全美有四千萬人患有長期的睡眠困擾,其中有一千八百萬人患有睡眠呼吸中止症,睡眠呼吸中止症不但會使人日間精神不濟,還會提高罹癌的風險甚至直接致命,可見這已是不可忽視的重要議題。目前臨床診斷上主要使用多導睡眠記錄儀整夜所收錄的電生理訊號來觀察,但醫院或睡眠中心資源有限,需要花時間排隊預約多導睡眠紀錄,在不熟悉的環境也容易影響睡眠品質進而影響診斷。傳統的多導睡眠記錄儀昂貴而且使用大量的電極線不方便自行操作,因此並不適合居家使用。本論文開發一套可攜式居家睡眠呼吸障礙監測系統,醫生先透過問診的方式預測患者有睡眠呼吸障礙後,將本系統借患者帶回家記錄與監測。因為是為睡眠呼吸障礙而設計,所以未記錄腦電圖、眼電圖和肌電圖等多導睡眠記錄儀常用的訊號,大幅增加使用的方便性與舒適性也降低了成本,使得本系統更加適合居家使用。
    本系統整合硬體端、韌體端與軟體端設計,可即時同步紀錄與監測鼻腔氣流、胸部呼吸、腹部呼吸、鼾聲、睡姿、血氧濃度和脈搏,若偵測到血氧濃度太低會即時發出警告。為了驗證本系統即時推算出的血氧濃度與脈搏的準確度,我們同時使用本系統與市售的 siesta PSG 收錄12位健康成年人的光體積描繪圖(PPG),血氧濃度的誤差值約2個百分點、平均每分鐘的脈搏誤差值為1下。此外本論文收錄五位受測者模擬阻塞型睡眠呼吸中止症的症狀,驗證其的確能紀錄睡眠呼吸障礙時的生理訊號。本系統也經過五晚的整夜睡眠實驗驗證其可穩定連續紀錄與監測生理訊號達七小時。

    According to the statistics by National Sleep Foundation in United States, approximately 40 million and 18 million American suffer from chronic sleep disorder and sleep apnea. Sleep apnea will make people out of spirits, increase risk of cancer and even be fatal. For diagnosis, polysomnographic (PSG) test during all night are usually taken in clinic. However, patients are often on a wait list for a considerable period depending on local medical resource availability. Patients sleep in unfamiliar environment will affect the accuracy of diagnosis results. Moreover, traditional PSG is expensive and needs large amount of wires which may bother sleep and make the PSG not self-applicable. So it is not suitable at home. In this study, we develop a portable homecare monitoring system for sleep-related breathing disorders. If doctors predict someone has sleep-related breathing disorders like sleep apnea and want to confirm that, they can lend this system to patients to record and monitor their sleep at home. Due to our system is designed for sleep-related breathing disorders, it doesn’t record EEG, EOG, or EMG. To make it suitable for home use, we improve the convenience and comfortableness and reducing the costs in the same time.
    The system proposed in this study is integrated with hardware, firmware and software design. It records and real-time monitors nasal airflow, thoracic respiration, abdominal respiration, snore, sleep position, SpO2 and pulse per minute simultaneously. If the system detects the SpO2 of the patient is too low, it will give the alarm immediately. In order to verify the accuracy of SpO2 and pulse per minute estimated real-time by our system, we record photoplethysmography (PPG) from 12 healthy subjects by our system and siesta PSG simultaneously. The error value of SpO2 and pulse per minute is approximately 2 percentage and 1 beat per minute. In addition, we find 5 subjects to imitate the symptom of patient who suffer from obstructive sleep apnea to verify our system can record and monitor biomedical signals of sleep-related breathing disorders indeed. Through 5 night all-night continuous experiment, our system can continuously operate for 7 hours.

    Abstract in Chinese III Abstract in English IV Acknowledgements VI Contents VII List of Tables IX List of Figures X Chapter 1 Introduction 1 1.1 Sleep Disorder 1 1.2 Sleep-related Breathing Disorders 1 1.2.1 Sleep Apnea 2 1.2.2 Hypopnea 3 1.3 Relative Work 3 1.4 Motivation and Objective 4 1.5 Thesis Organization 5 Chapter 2 Research Background 6 2.1 Respiration 6 2.1.1 Respiratory Belt 7 2.1.2 Pressure and Thermal Airflow 8 2.2 Snoring 8 2.3 Photoplethysmography (PPG) 9 2.4 Sleeping position 12 Chapter 3 System Design and Implementation 13 3.1 System Architecture 13 3.2 Hardware Design and Implementation 14 3.2.1 Nasal Airflow Detection Circuit 15 3.2.2 Respiration Detection Circuit 16 3.2.3 Snore Detection Circuit 19 3.2.4 Photoplethysmography (PPG) Acquirement Circuit 20 3.2.5 Position Estimation Circuit 27 3.2.6 Power Supply Circuit 29 3.2.7 Specifications of Hardware Implementation 30 3.3 Firmware Design and Implementation 31 3.3.1 Switch Control 32 3.3.2 Data Acquisition 33 3.3.3 Data Storage 34 3.3.4 Wireless Transmission 35 3.4 Software Design and Implementation 35 3.4.1 Graphic User Interface 35 3.4.2 Estimation of SpO2 and Pulse per Minute 37 Chapter 4 Evaluation and Experiment 42 4.1 Verification for Estimation of SpO2 and Pulse per Minute 42 4.2 Breathing Disorder Monitoring Experiment 47 4.3 All-night Continuous Recording Experiment 50 Chapter 5 Conclusion and Future Work 53 Reference 55

    Agnew, H. W., Webb, W. B., & Williams, R. L. (1966). THE FIRST NIGHT EFFECT: AN EEG STUDYOF SLEEP. Psychophysiology, 2(3), 263-266.
    Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiological measurement, 28(3), R1.
    Analog Devices, I. (2009). ADXL335 Datasheet. from http://www.analog.com/en/index.html
    Aoyagi, T., & Miyasaka, K. (2002). Pulse oximetry: its invention, contribution to medicine, and future tasks. Anesthesia and analgesia, 94(1 Suppl), S1.
    Berry, R. B., Budhiraja, R., Gottlieb, D. J., Gozal, D., Iber, C., Kapur, V. K., . . . Quan, S. F. (2012). Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. J Clin Sleep Med, 8(5), 597-619.
    Biebuyck, J. F., Severinghaus, J. W., & Kelleher, J. F. (1992). Recent developments in pulse oximetry. Anesthesiology, 76(6), 1018-1038.
    Bloch, K. E. (1997). Polysomnography: a systematic review. Technology and health care, 5(4), 285-305.
    Braver, H. M., Block, A. J., & Perri, M. G. (1995). Treatment for Snoring Combined Weight Loss, Sleeping on Side, and Nasal Spray. CHEST Journal, 107(5), 1283-1288.
    Cardozo, J. S. (2008). New AASM Recommendations for Sensors: A Simple Guide for the Sleep Technologist. from http://www.sleepdt.com/new-aasm-recommendations-for-sensors-a-simple-guide-for-the-sleep-technologist-j-scott-cardozo/
    Cartwright, R., Diaz, F., & Lloyd, S. (1991). The effects of sleep posture and sleep stage on apnea frequency. Sleep, 14(4), 351-353.
    Chang, D.-W., Liu, Y.-D., Young, C.-P., Chen, J.-J., Chen, Y.-H., Chen, C.-Y., . . . Liang, S.-F. (2012). Design and Implementation of a modularized polysomnography system. Instrumentation and Measurement, IEEE Transactions on, 61(7), 1933-1944.
    COMPUMEDICS. (2008). from http://www.compumedics.com/
    Convidien. (2011). from http://www.covidien.com/rms/brands/nellcor
    Edinger, J. D., Fins, A. I., Sullivan Jr, R. J., Marsh, G. R., Dailey, D. S., Hope, T. V., . . . Vasilas, D. (1997). Sleep in the laboratory and sleep at home: comparisons of older insomniacs and normal sleepers. Sleep: Journal of Sleep Research & Sleep Medicine.
    Farre, R., Montserrat, J., Rotger, M., Ballester, E., & Navajas, D. (1998). Accuracy of thermistors and thermocouples as flow-measuring devices for detecting hypopnoeas. European Respiratory Journal, 11(1), 179-182.
    Flemons, W. W., Douglas, N. J., Kuna, S. T., Rodenstein, D. O., & Wheatley, J. (2004). Access to diagnosis and treatment of patients with suspected sleep apnea. American journal of respiratory and critical care medicine, 169(6), 668-672.
    George, C. F., Millar, T., & Kryger, M. (1988). Sleep apnea and body position during sleep. Sleep: Journal of Sleep Research & Sleep Medicine.
    Lombardi, R., Coldani, G., Danese, G., Gandolfi, R., & Leporati, F. (2003). Data acquisition system for measurements in free moving subjects and its applications. Instrumentation and Measurement, IEEE Transactions on, 52(3), 878-884.
    National Institutes of Health. What Is Sleep Apnea? , from http://www.nhlbi.nih.gov/health/health-topics/topics/sleepapnea/
    National Sleep Foundation. (2012). Sleep Disorders Problems.
    Oksenberg, A., Silverberg, D. S., Arons, E., & Radwan, H. (1997). Positional vs Nonpositional Obstructive Sleep Apnea Patients Anthropomorphic, Nocturnal Polysomnographic, and Multiple Sleep Latency Test Data. CHEST Journal, 112(3), 629-639.
    Pologe, J. A. (1987). Pulse oximetry: technical aspects of machine design. International anesthesiology clinics, 25(3), 137-153.
    Sinex, J. E. (1999). Pulse oximetry: principles and limitations. The American journal of emergency medicine, 17(1), 59-66.
    Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature, 437(7063), 1272-1278.
    Texas Instruments. (2011). CC2530 Datasheet.
    Tremper, K. K. (1989). Pulse oximetry. CHEST Journal, 95(4), 713-715.
    Webster, J. G. (2002). Design of pulse oximeters: CRC Press.
    Wukitsch, M. W., Petterson, M. M. T., Tobler, D. R., & Pologe, J. A. (1988). Pulse oximetry: analysis of theory, technology, and practice. Journal of Clinical Monitoring, 4(4), 290-301.
    Zijlstra, W., Buursma, A., & Meeuwsen-Van der Roest, W. (1991). Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clinical chemistry, 37(9), 1633-1638.

    無法下載圖示 校內:2017-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE