簡易檢索 / 詳目顯示

研究生: 吳信毅
Wu, Xin-Yi
論文名稱: 以混合逆算法配合實驗數據探討逆向熱傳導問題
Investigation of the inverse heat conduction problems using the hybrid inverse method with experimental data
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 109
中文關鍵詞: 表面溫度逆向熱傳導問題熱傳係數表面熱通量表面吸收率三次仿樣曲線混合逆算法
外文關鍵詞: inverse heat conduction problem, surface heat flux, surface absorptivity, surface temperature, cubic spline, heat transfer coefficient, hybrid inverse method
相關次數: 點閱:233下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用混合逆算法來探討逆向熱傳導問題。本文首先利用結合了拉氏轉換( Laplace transform )、有限差分( finite difference )及最小平方法( least-squares methods )之混合逆算法搭配試件內部之量測溫度來預測線性與非線性逆向熱傳導問題之未知表面條件( surface conditions );求解非線性逆向熱傳導問題時,先以泰勒級數近似法( Taylor’s series approximation )對統制方程式中之非線性項進行線性化處理;本文之逆算法求解時,試件之未知表面條件的函數形式不需事先已知,在進行逆運算前先將整個時間域區分成多個小時間域,而後每個小時間域的預測值便可以利用本文之逆算法求得。
    本文並以上述之混合逆算法結合三次仿樣曲線( cubic spline )來預測二維穩態與暫態逆向熱傳導問題之系統邊界上的熱傳係數( heat transfer coefficient );本文之逆算法求解時,未知熱傳係數的函數形式不需事先已知,在進行逆運算前先將整個空間域區分成多個小區域,而後再以三次仿樣曲線來模擬穩態熱傳係數隨位置的變化情形;求解暫態逆向熱傳導問題時,本文將以多個連續之位置三次多項式函數與時間線性函數來模擬未知表面條件隨位置與時間的變化情形。
    為了驗證本文混合逆算法的精確度與可靠度,預測結果將與正確值、參考文獻之估算結果及實驗數據比較,同時也將討論未知係數之起始猜測值、量測位置及量測誤差對預測結果的影響;結果顯示應用本文之逆算法確實可以求得良好的表面條件與熱傳係數預測結果,且起始猜測值與量測位置對預測結果的影響並不是很明顯,即使有量測誤差的影響,仍然可以獲得良好且穩定的預測結果;在求解二維逆向熱傳導問題時,由於本文之逆算法結合了三次仿樣曲線,所以不僅可以減少測溫點的數目,同時還可以增加預測結果的精確度。

    This study applies the hybrid inverse method to investigate the inverse heat conduction problems. A hybrid inverse scheme involving the Laplace transform, finite difference and least-squares methods in conjunction with experimental data inside the test material is proposed to estimate the unknown surface conditions for the linear and nonlinear inverse heat conduction problems. The nonlinear terms in the differential equations of the nonlinear inverse heat conduction problem are linearized using the Taylor’s series approximation. The functional form of the surface conditions is unknown a priori. The whole time domain is divided into several analysis sub-time intervals and then the unknown estimates on each sub-time interval can be predicted.
    The above hybrid scheme in conjunction with the cubic spline is applied to predict the distribution of the heat transfer coefficient on a surface exposed to a moving fluid in the two-dimensional steady and transient inverse heat conduction problems. The functional form of the heat transfer coefficient is unknown a priori. The whole spatial domain of the unknown heat transfer coefficient can be divided into several analysis sub-intervals. Later, a cubic spline is introduced to estimate the distribution of the steady heat transfer coefficient, a series of connected cubic polynomial function in space and a linear function in time are introduced to estimate the distribution of the unknown surface conditions for the transient inverse heat conduction problem.
    In order to show the accuracy and reliability of the present inverse scheme, comparisons among the present estimates, exact solution, previous results and experimental data are made. The effects of the initial guesses, measurement locations and measurement errors on the estimated results are also investigated. The results show that good estimation on the surface conditions and heat transfer coefficient can be obtained. The estimated results are not very sensitive to the initial guesses and measurement locations. The present estimates exhibit stable behavior and slightly deviate from the exact solution in the cases with measurement errors. Due to the application of the cubic spline, the present inverse scheme not only can reduce the number of the measurement locations but also can increase the accuracy of the estimated results for the two-dimensional inverse heat conduction problems.

    中文摘要 I 英文摘要 Ⅱ 誌謝 Ⅳ 目錄 Ⅴ 表目錄 Ⅷ 圖目錄 Ⅹ 符號說明 ⅩⅣ 第一章 前言 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究目的 3 1-4 研究重點與本文架構 5 第二章 表面吸收率之預測 6 2-1 簡介 6 2-2 理論分析 7 2-2-1 數學模式 7 2-2-2 數值分析 8 2-3 結果與討論 13 2-3-1 數值模擬 14 2-3-2 表面吸收率之預測 15 2-4 結論 17 第三章 非線性逆向熱傳問題之表面條件預測 29 3-1 簡介 29 3-2 理論分析 30 3-2-1 數學模式 30 3-2-2 數值分析 32 3-3 結果與討論 36 3-3-1 數值模擬 36 3-3-2 實驗操作與數據分析 38 3-4 結論 42 第四章 穩態熱傳係數之預測 58 4-1 簡介 58 4-2 理論分析 60 4-2-1 數學模式 60 4-2-2 數值分析 61 4-3 結果與討論 65 4-3-1 與參考文獻[33]之估算結果比較 65 4-3-2 僅利用溫度數據之分析方法 68 4-4 結論 70 第五章 暫態逆向熱傳導問題之熱傳係數預測 82 5-1 簡介 82 5-2 理論分析 82 5-2-1 數學模式 82 5-2-2 數值分析 83 5-3 結果與討論 88 5-4 結論 90 第六章 總結與未來展望 100 5-1 綜合結論 100 5-2 未來展望 101 參考文獻 102 個人著作 108 自述 109

    1.E. Hensel, Inverse Theory and Applications for Engineers, Prentice-Hall, Englewood Cliffs, NJ, 1991.
    2.M.N. Özisik, Heat Conduction, 2nd ed., John Wiley and Sons, New York, 1993.
    3.K. Kurpisz, A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Southampton, UK, 1995.
    4.N.V. Shumakov, A method for the experimental study of the process of heating a solid body, Sov. Phys. Tech. Phys. (Translated by American Institute of Physiscs) 2 (1957) 771-781.
    5.G. Stolz, Jr, Numerical solution to an inverse problem of heat condition for simple shapes, ASME J. Heat Transfer 82 (1960) 20-26.
    6.J.V. Beck, Calculation of surface heat flux from an integral temperature history, ASME paper 62-HT-46 (1962).
    7.J.V. Beck, Surface heat determination using an integral method, Nucl. Eng. Des. (1968) 170-178.
    8.J.V. Beck, Nonlinear estimation applied the nonlinear inverse heat conduction problem, Int. J. Heat Mass Transfer 13 (1970) 703-715.
    9.J.V. Beck, B. Litkouhi, C.R.St. Clair, Jr, Efficient sequential solution of nonlinear inverse heat conduction problem, Numer. Heat Transfer 5 (1982) 275-286.
    10.J.V. Beck, B. Blackwell, C.R.St. Clair, Jr, Inverse Heat Conduction: Ill-posed Problems, Wiley, New York, 1985.
    11.A.M. Osman, J.V. Beck, Investigation of transient heat transfer coefficients in quenching experiments, ASME J. Heat Transfer 112 (1990) 843-848.
    12.J.V. Beck, B. Blackwell, A. Haji-Sheikh, Comparison of some inverse heat conduction method using experimental data, Int. J. Heat Mass Transfer 39 (1996) 3649-3657.
    13.M.N. Özisik, H.R.B. Orlande, Inverse Heat Transfer: Fundamentala and Applications, Taylor & Francis, New York, 1990.
    14.H.Y. Li, M.N. Özisik, Identification of the temperature profile in an absorbing, emitting and isotropically scattering medium by inverse analysis, ASME J. Heat Transfer 114 (1992) 1060-1063.
    15.H.C. Huang, M.N. Özisik, Conjudate gradient method for determining unknown contact conductance during metal casting, Int. J. Heat Mass Transfer 35 (1992) 1779-1786.
    16.H.C. Huang, M.N. Özisik, Inverse problem of determining unknown wall heat flux in laminar flow through a parallel duct, Numer. Heat Transfer A 21 (1992) 55-70.
    17.H.T. Chen, S.M. Chang, Application of the hybrid method to inverse heat conduction problems, Int. J. Heat Mass Transfer 33 (1990) 621-628.
    18.H.T. Chen, S.Y. Lin, L.C. Fang, Estimation of surface temperature in two-dimensional inverse heat conduction problems, Int. J. Heat Mass Transfer 44 (2001) 1455-1463.
    19.H.T. Chen, S.Y. Lin, H.R. Wang, L.C. Fang, Estimation of two-sided boundary conditions for two-dimensional inverse heat conduction problems, Int. J. Heat Mass Transfer 45 (2002) 15-23.
    20.H.T. Chen, X.Y. Wu, Application of the hybrid method to the estimation of surface conditions from experimental data, Trends in Heat, Mass and Momentum Transfer 8 (2002) 103-114.
    21.H.T. Chen, X.Y. Wu, Y.S. Hsiao, Estimation of surface condition from the theory of dynamic thermal stresses, Int. J. Thermal Sci. 43 (2004) 95-104.
    22.H.T. Chen, J.P. Song, Y.T. Wang, Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers, Int. J. Heat Mass Transfer 48 (2005) 2697-2707.
    23.H.T. Chen, J.C. Chou, Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers, Int. J. Heat Mass Transfer 49 (2006) 3034-3044.
    24.H.T. Chen, J.C. Chou, H.C. Wang, Estimation of heat transfer coefficient on the vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacings, Int. J. Heat Mass Transfer (2006). (in press)
    25.D.A. Murio, The Mollification Method and the Numerical Solution of Ill-Posed Problems, Wiley, New York, 1993.
    26.A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problems, V.H. Winton, Washington, DC, 1977.
    27.O.M. Alifanov, E.A. Artyukhin, S.V. Rumyantsev, Extreme Methods for Solving Ill-posed Problems with Applications to Inverse Heat Transfer, Begell House, New York, 1995.
    28.C.Y. Yang, A sequential method to estimate the strength of the heat source based on symbol computation, Int. J. Heat Mass Transfer 41 (1998) 2245-2252.
    29.C.C. Ji, P.C. Tuan, H.Y. Jang, A recursive least-squares algorithm for on-line 1-D inverse heat conduction estimation, Int. J. Heat Mass Transfer 40 (1997) 2081-2096.
    30.C. C. Ji, H. Y. Jang, Experimental inverse investigation in inverse heat conduction problem, Numer. Heat Transfer A 34 (1998) 75-91.
    31.J.T. Wang, C.I. Weng, J.G. Chang, The influence of temperature and surface conditions on surface absorptivity in laser surface treatment, J. Appl. Phy. 87 (2000) 3245-3253.
    32.李弘毅, 逆向熱傳導問題之理論與實驗研究, 國科會報告 NSC 87-2212-E-211-007, 1998.
    33.T.J. Martin, G.S. Dulikravich, Inverse determination of steady heat convection coefficient distributions, ASME J. Heat Transfer 120 (1998) 328-334.
    34.J. Taler, W. Zima, Solution of inverse heat conduction problems using control volume approach, Int. J. Heat Mass Transfer 42 (1999) 1123-1140.
    35.Y.S. Sun, C.I. Weng, T.C. Chen, W.L. Li, Estimation of surface absorptivity and surface temperature in laser surface hardening process, Jpn. J. Appl. Phys. 35 (2000) 3658-3664.
    36.O.M. Alifanov, E.A. Artyukhin, Regularized numerical solution of nonlinear inverse heat conduction problem, J. Eng. Phy. 29 (1975) 934-938.
    37.G.A. Dorai, D.A. Tortorelli, Transient inverse heat conduction problem solution via Newton’s method, Int. J. Heat Mass Transfer 40 (1997) 4115-4127.
    38.R.A. Khachfe, Y. Jarny, Numerical solution of 2-D nonlinear inverse heat conduction problems using finite-element techniques, Numer. Heat Transfer B 37 (2000) 45-67.
    39.C.Y. Yang, Estimation of boundary conditions in nonlinear inverse heat conduction problems, J. Thermophy. Heat Transfer 17 (2003) 389-395.
    40.N. Daouas, M.S. Radhouani, A new approach of the Kalman filter using future temperature measurements for nonlinear inverse heat conduction problems, Numer. Heat Transfer B 45 (2004) 565-585.
    41.S. Chantasiriwan, Inverse heat conduction problem of determining time-dependent heat transfer coefficient, Int. J. Heat Mass Transfer 42 (2000) 4275-4285.
    42.S. Chantasiriwan, Inverse determination of steady-state heat transfer coefficient, Int. Comm. Heat Mass Transfer 27 (2000) 1155-1164.
    43.P. Duda, J. Taler, Numerical method for the solution of nonlinear two-dimensional inverse heat conduction problem using unstructured meshes, Int. J. Numer. Meth. Engng. 48 (2000) 881-899.
    44.J.H. Lin, C.K. Chen, Y.T. Yang, The inverse estimation of the boundary behavior of a heated cylinder normal to a laminar air stream, Int. J. Heat Mass Transfer 43 (2000) 3991-4001.
    45.J.H. Lin, C.K. Chen, Y.T. Yang, An inverse method for simultaneous estimation of the center and surface thermal behavior of a heated cylinder normal to a turbulent air stream, ASME J. Heat Transfer 124 (2002) 601-608.
    46.P.L. Masson, T. Loulou, E. Artioukhine, Estimation of a 2D convection heat transfer coefficient during a test: comparison between two methods and experimental validation, Inverse Problems in Science and Engineering 12 (2004) 595-617.
    47.P. Duda, J. Taler, Experimental verification of space marching methods for solving inverse heat conduction problems, Heat and Mass Transfer 36 (2000) 325-331.
    48.C. W. Chang, C. S. Liu, J. R. Chang, A group preserving scheme for inverse heat conduction problems, CMES 10 (2005) 13-38.
    49.T.J. Weiting, The infrared absorptance of platinum at elevated temperatures, Bull. Am. Phys. Soc. 19 (1974) 339.
    50.J.E. Robin, P. Nordin, Spectral absorptance at 3.8- wavelength for aluminum and pyroceram at elevated temperatures, Appl. Phys. Lett. 27 (1975) 493-495.
    51.J.A. Mckay, J.A. Rayne, Temperature dependence of the infrared absorptivity of the noble metals, Phys. Rev. Part B 13 (1976) 673-685.
    52.G.H. Harth, W.C. Leslie, V.G. Gregson Jr, B.A. Sanders, Laser heat treating of steels, J. Metal 28 (1976) 5-11.
    53.T.J. Weiting, J.T. Schriemph, Infrared absorptances of partially ordered alloys at elevated temperature, J. Appl. Phys. 47 (1976) 4009-4011.
    54.T.J. Weiting, J.L. DeRosa, Effects of condition on the infrared absorptivity of 304 stainless steel, J. Appl. Phys. 50 (1979) 1071-1079.
    55.H.T. Chen, J.Y. Lin, Hybrid laplace transform technique for non-linear transient thermal problems, Int. J. Heat Mass Transfer 34 (1991) 1301-1308.
    56.H.T. Chen, J.Y. Lin, Application of the laplace transform to nonlinear transient problems, Appl. Math. Modeling 15 (1991) 144-151.
    57.J.P. Holman, W.J. Gajda, Jr, Experimental Methods for Engineers, 5th ed., McGraw-Hill, New York, 1989, pp. 37-83.
    58.G. Honig, U. Hirdes, A method for the numerical inversion of laplace transforms, J. Comput. Appl. Math. 10 (1984) 113-132.
    59.V.S. Arpaci, S.H. Kao, A. Selamet, Introduction to Heat Transfer, Prentice- Hall, NJ, 1999.
    60.R. Ralph, Thermal design of electronic equipment, CRC Press, Florida, 2000.

    下載圖示 校內:立即公開
    校外:2006-07-19公開
    QR CODE