| 研究生: |
孫雪湄 Sun, Shiue-Mei |
|---|---|
| 論文名稱: |
無樁式電動機車共享系統之最佳動態運補與眾包運送任務規劃研究 Optimal Task Planning for Dynamic Repositioning and Crowdsourced Shipping in a Free-floating Electric Motorcycle Sharing System |
| 指導教授: |
王逸琳
Wang, I-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 無樁式 、電動機車共享系統 、動態運補 、路徑分群 、眾包運送 |
| 外文關鍵詞: | Free-floating, Electric motorcycle sharing system, Dynamic repositioning, Trajectory clustering, Crowdsourced shipping |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
將閒置資源分享共用以達成雙贏的共享經濟近年來蓬勃發展,本研究首先針對都會區內新興的無樁式電動機車共享系統,在日間的車輛配置時時受到使用者行為影響之際,探討如何指派其員工移動閒置車輛,以滿足更多租車需求之「動態運補」問題,避免車輛配置不利於使用者的租借;再進一步分析該共享系統所存取之會員騎乘路線資料,以協助「眾包運送」平台找尋合適對象,進行推播媒合度較高的運送任務。
在動態運補部分,本研究先劃分營運區域為數個虛擬站點,每30分鐘為一期,考慮各虛擬站點在各期的歷史租借記錄、當下閒置車數與員工人數後,再建構滾動式的數學規劃模型,以指派各員工移車或移位,將電動機車與租借需求的時地配置最佳化。由於無樁式的營運模式不受到固定站點設施的限制,讓其共享載具的租還地點與使用者的真實需求十分貼近,且該類系統每數秒會將車輛即時的狀態與位置資訊上傳,這些使用者移動路徑巨量資料加以分析後,恰好可被諸如UberEATS或GOGOVAN等國內外新創的眾包運送平台用來精準行銷,針對各運送任務找出資料庫中較順路的會員,對其推播媒合度較高的任務。本研究將以路徑分群手法統整會員的騎乘習慣,建構具有推播數量限制的任務推送數學規劃模型,避免過多的推播成為無效的垃圾訊息,達到精準媒合運送任務的效果,徹底發揮電動載具、個人時間等閒置資源的共享綜效。
The sharing economy has created opportunities for idle asset sharing and increased asset utilization, with the vehicle sharing system as a successful application. This thesis focused on issues related to the emerging free-floating electric motorcycle sharing system. We first investigate the dynamic repositioning strategies, and then discuss how to analyze the historical user trajectory data which can then be used for a crowdsourced shipping platform to seek optimally matched riders to plan shipping tasks.
In the first part, we first divide the entire operating area as a set of regions, where each region is treated as a virtual station. An ideal inventory mathematical model is proposed to determine the optimal ideal initial inventory for each period at each virtual station. Two dynamic repositioning models which assign staff to move idle motorcycles are proposed: the vehicle ideal inventory repositioning model, and the maximum demand satisfaction repositioning model.
In the second part, we explore a good application using the historical user trajectory data in this vehicle sharing system. For each user at each period, we group his/her historical trajectory data by trajectory clustering. Then, for each delivery task appeared in a crowdsourced shipping platform, we calculate the best matched users whose clustered trajectories have smaller expected detour costs, then only push these matched tasks to those users. Our proposed task pushing model achieves more accurate push effects and avoids ineffective delivery task pushes.
周佰賢. (2015). 考慮需求變化狀況及增設臨停區之公共自行車共享系統租借站分群與車輛調度策略研究. 成功大學工業與資訊管理學系學位論文, 1-72.
洪菁蓬. (2011). 公共自行車租借系統之最佳租借站位址設置及車輛運補策略之研究. 成功大學工業與資訊管理學系學位論文, 1-80.
侯貞泰. (2016). 公共自行車共享系統之群眾運補策略數學模型與資料視覺化工具設計研究. 成功大學工業與資訊管理學系學位論文, 1-71.
張立蓁. (2010). 都會區公共自行車租借系統之設計與營運方式研究. 成功大學工業與資訊管理學系學位論文, 1-83.
梁瑜庭. (2013). 公共電動機車共享系統之最佳車輛佈署策略研究. 成功大學工業與資訊管理學系學位論文, 1-83.
廖敏婷. (2012). 考慮需求比例及暫時人力配置之公共自行車租借系統管理策略研究. 成功大學工業與資訊管理學系學位論文, 1-65.
Caggiani, L., Camporeale, R., Ottomanelli, M., & Szeto, W. Y. (2018). A modeling framework for the dynamic management of free-floating bike-sharing systems. Transportation Research Part C: Emerging Technologies, 87, 159-182.
Cheng, S. F., Chen, C., Kandappu, T., Lau, H. C., Misra, A., Jaiman, N., ... & Koh, D. (2018). Scalable urban mobile crowdsourcing: Handling uncertainty in worker movement. ACM Transactions on Intelligent Systems and Technology (TIST), 9(3), 26.
Jorge, D., Correia, G. H., & Barnhart, C. (2014). Comparing optimal relocation operations with simulated relocation policies in one-way carsharing systems. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1667-1675.
Kek, A. G., Cheu, R. L., & Chor, M. L. (2006). Relocation simulation model for multiple-station shared-use vehicle systems. Transportation research record, 1986(1), 81-88.
Kek, A. G., Cheu, R. L., Meng, Q., & Fung, C. H. (2009). A decision support system for vehicle relocation operations in carsharing systems. Transportation Research Part E: Logistics and Transportation Review, 45(1), 149-158.
Lee, J. G., Han, J., & Whang, K. Y. (2007, June). Trajectory clustering: a partition-and-group framework. In Proceedings of the 2007 ACM SIGMOD international conference on Management of data (pp. 593-604). ACM.
Nanni, M., & Pedreschi, D. (2006). Time-focused clustering of trajectories of moving objects. Journal of Intelligent Information Systems, 27(3), 267-289.
Nourinejad, M., Zhu, S., Bahrami, S., & Roorda, M. J. (2015). Vehicle relocation and staff rebalancing in one-way carsharing systems. Transportation Research Part E: Logistics and Transportation Review, 81, 98-113.
Raviv, T., Tzur, M., & Forma, I. A. (2013). Static repositioning in a bike-sharing system: models and solution approaches. EURO Journal on Transportation and Logistics, 2(3), 187-229.
Sampaio Oliveira, A. H., Savelsbergh, M. W. P., Veelenturf, L. P., & van Woensel, T. (2017). Crowd-based city logistics. SCL Report Series, (17-02).
Weikl, S., & Bogenberger, K. (2013). Relocation strategies and algorithms for free-floating car sharing systems. IEEE Intelligent Transportation Systems Magazine, 5(4), 100-111.
Yildiz, B., & Savelsbergh, M. (2017). Provably high-quality solutions for the meal delivery routing problem. Georgia Institute of Technology.
Yildiz, B., & Savelsbergh, M. (2018). Service and Capacity Planning in Crowd-Sourced Delivery. https://doi.org/10.2139/ssrn.3135550
校內:2024-08-30公開