簡易檢索 / 詳目顯示

研究生: 曾國翰
Tzeng, Kuo - Han
論文名稱: 以分子動力學探討銅鋯金屬玻璃薄膜與多晶銅間的機械性質與擴散行為
A Study on Mechanical Properties and Diffusion Behaviour of Copper-Zirconium Thin Film Metallic Glass and Polycrystalline Copper with Molecular Dynamics Simulation
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 76
中文關鍵詞: 銅鋯二元金屬玻璃分子動力學拉伸剪切擴散阻障層
外文關鍵詞: copper-zirconium binary metal glass, molecular dynamics, tensile, shear, diffusion, barrier layer
相關次數: 點閱:143下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,超大規模集成電路中開發新的佈線材料需求有顯著的增加,而銅與鋁相比之下,銅擁有較低的電阻率和優異的電遷移電阻。然而器件在運作時銅會擴散到錫層並且形成不利於結構疲勞強度之金屬間化合物。因此需要在銅與錫之間加入擴散阻障層,以抑制銅擴散後與錫的反應。金屬玻璃薄膜在微觀尺度下屬非晶態之結構,具有原子不易擴散的特性,可在晶片封裝時作為一中間層,藉以阻擋金屬基材與矽層界面間的相互反應。因此本研究的重點在於模擬銅鋯基二元金屬玻璃接作為擴散阻障,並且在下方接多晶銅於微奈米尺度下進行拉伸與剪切試驗,探討其機械性質與擴散行為。在模擬方法上,使用分子動力學與FS (Finnis-Sinclair)勢能函數作為理論基礎,並配合開放式軟體LAMMPS做為輔助工具。結果顯示隨著冷卻速率的降低,各種銅鋯金屬玻璃的非晶態結構比例會越低。而在拉伸與剪切試驗的結果,呈現出淬火速率愈低其極限應力值會愈大的現象,但應力應變曲線取決於材料本身的晶體結構,因此極限應力值之間並沒有很大的差異。在不同銅鋯比例的拉伸與剪切的情形下,會隨著銅原子的含量愈高,其極限應力也會愈大。在溫度方面,材料的極限應力強度均隨系統溫度的上升而下降,材料的延性會越好。另外,本研究在材料交接處隨機性取出5%的原子數以作為材料缺陷,結果顯示各不同比例之銅鋯金屬玻璃的極限應力均有下降的情形,其中下降幅度最大的為Cu64Zr36。最後在擴散模擬中,發現當淬火速率較高以及含銅量愈高時,阻障效果也較好,而系統在高溫時會降低阻障層性能。經過綜合比較,本研究最好的金屬玻璃阻障層為Cu64Zr36材料。

    In this thesis, the effects of quenching rate and alloy ratio on the mechanical properties and diffusion mechanism of binary copper-zirconium polycrystalline copper under uniaxial tensile and shear tests were investigated. Molecular dynamics simulations were carried out using the program package LAMMPS with FS (Finnis-Sinclair) potential. The results show that as the cooling rate decreases, the proportion of the amorphous structure of various copper-zirconium metal glasses becomes decreased. The results of the tensile and shear tests show that the lower the quench rate, the higher the ultimate stress value. In the case of different alloy ratios of copper to zirconium, the higher the content of copper atoms, the greater the ultimate stress. The ultimate stress of material decreases as the temperature of the system increases, and the ductility of the material will be better. In addition, in this thesis, 5% of the atoms were randomly taken out as the material defect around the material interface, and the results showed that the ultimate stress of copper-zirconium metal glass in all different alloy ratios decreased. Finally, in the diffusion simulation, it was found that when the quench rate and the copper content are higher, the barrier effect becomes better. On the other hand, the performance of the barrier layer tends to be worse at higher temperatures. After a comprehensive comparison, it was found that the best the best metallic glass barrier layer in this thesis is Cu64Zr36.

    表目錄 X 圖目錄 XI 符號 XIV 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 金屬玻璃發展史 2 1-2-2 金屬玻璃薄膜 3 1-2-3 金屬玻璃之分子模擬 3 1-2-4 擴散阻障層 5 1-3 研究動機與目的 7 1-4 本文架構 8 第二章 分子動力學基本原理 9 2-1 分子動力學基本假設 9 2-2 分子間作用力與勢能函數 10 2-2-1 分子間作用力 10 2-2-2 勢能函數 11 2-3 系統之初始速度 16 2-4 系統溫度修正 17 2-5 截斷半徑與鄰近表列法 18 2-6 週期邊界條件與最小映像法則 22 2-7 預測修正法 25 2-8 無因次化 26 2-9 原子級應力 26 第三章 模擬分析架構 28 3-1 初始物裡模型 28 3-2模擬軟體 32 3-3勢能函數選擇 32 3-4 模擬流程 33 第四章 結果分析與討論 34 4-1 淬火後之模型 34 4-1-1 模型之結晶種類與比例 34 4-1-2 模型之徑向分佈函數分析 39 4-2 鋯基二元奈米板接多晶銅之拉伸試驗 41 4-2-1 不同淬火速率拉伸比較 42 4-2-2 不同銅鋯合金比例拉伸比較 47 4-2-3 不同溫度之拉伸比較 51 4-2-4 材料缺陷之拉伸比較 55 4-3 鋯基二元奈米板接多晶銅之剪切試驗 59 4-3-1 不同淬火速率之剪切試驗比較 59 4-3-2 不同銅鋯比例之剪切試驗比較 64 4-4 鋯基二元奈米板接多晶銅之擴散模擬 67 第五章 結論與未來展望 72 5-1 結論 72 5-2 未來展望與建議 73 參考文獻 74

    [1]W. Klement, R. H. Willens, and P. O. L. Duwez, “Non-crystalline structure in solidified gold–silicon alloys,” Nature, vol. 187, pp. 869-870, 1960
    [2]H. S. Chen and D. Turnbull, “Formation, stability and structure of palladium-silicon based alloy glasses,” Acta Metallurgica, vol. 17, pp. 1021-1031, 1969
    [3]A. Inoue, T. Zhang, and T. Masumoto, “Al-La-Ni amorphous alloys with a wide supercooled liquid region,” Materials transactions, vol. 30, pp. 965-972, 1989
    [4]A. Peker and W. L. Johnson, “A highly processable metallic glass: Zr_41.2 Ti_13.8 Cu_12.5 Ni_10.0 Be_22.5,” Applied Physics Letters, vol. 63, pp. 2342-2344, 1993
    [5]B. Kennedy, “Energy efficient transformers,” McGraw-Hill, 1998
    [6]W. Guo, E. Jägle, J. Yao, V. Maier, S. Korte-Kerzel, J. M. Schneider, and D. Raabe, “Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates,” Acta Materialia, vol. 80, pp. 94-106, 2014
    [7]H. Turnow, H. Wendrock, S. Menzel, T. Gemming, and J. Eckert, “Synthesis and characterization of amorphous Ni–Zr thin films,” Thin Solid Films, vol. 561, pp. 48-52, 2014
    [8]P. J. Hsieh, Y. C. Lo, J. C. Huang, and S. P. Ju, “On the latest stage of transformation from nanocrystalline to amorphous phases during ARB: Simulation and experiment,” Intermetallics, vol. 14, pp. 924-930, 2006
    [9]P. J. Hsieh, Y. C. Lo, C. T. Wang, J. C. Huang, and S. P. Ju, “Cyclic transformation between nanocrystalline and amorphous phases in Zr based intermetallic alloys during ARB,” Intermetallics, vol. 15, pp. 644-651, 2007
    [10]J. Wang, P. D. Hodgson, J. Zhang, W. Yan, and C. Yang, “Effects of pores on shear bands in metallic glasses: A molecular dynamics study,” Computational materials science, vol. 50, pp. 211-217, 2010
    [11]Y. Shi and M. L. Falk, “Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass” Acta materialia, vol. 55, pp. 4317-4324, 2007
    [12]P. H. Sung and T. C. Chen, “Effects of Quenching Rate on Crack Propagation in Nial Alloy Using Molecular Dynamics,” Computational Materials Science, vol. 114, pp. 13-17, 2016
    [13]M. Imran, F. Hussain, M. Rashid, Y. Cai, and S. A. Ahmad, “Mechanical behavior of Cu—Zr bulk metallic glasses (BMGs): A molecular dynamics approach,” Chinese Physics B, vol. 22, p. 096101, 2013
    [14]L. Xie, P. Brault, A. L. Thomann, and L. Bedra, “Molecular dynamic simulation of binary ZrxCu100-x metallic glass thin film growth,” Applied Surface Science, vol. 274, pp. 164-170, 2013
    [15]W. Diyatmika, J. P. Chu, Y. W. Yen, and C. H. Hsueh, “Sn whisker mitigation by a thin metallic-glass underlayer in Cu-Sn,” Applied Physics Letters, vol. 103, p. 241912, 2013
    [16]W. Diyatmika, J. P. Chua, Y. W. Yena, W. Z. Changa, and C. H. Hsuehb, “Thin film metallic glass as an underlayer for tin whisker mitigation: A room-temperature evaluation,” Thin Solid Films, vol. 561, pp. 93–97, 2014
    [17]H. Yan, Y. Y. Tay, Y. Jiang, N. Yantara, J. Pan, M. H. Liang, and Z. Chen, “Copper diffusion barrier performance of amorphous Ta–Ni thin films,” Applied Surface Science, vol. 258, pp. 3158– 3162, 2012
    [18]專利 102121084: 可抑制錫鬚晶成長之非晶材料結構
    [19]J. D.P lummer, M. D. Deal, and P. B. Griffin, “Silicon VLSI Technology, Practice Hall,” New Jersey, p. 695, 2000
    [20]J. C. Lin and C. Lee, “J. Electrochem,” Soc, vol. 146, p. 346, 1999
    [21]J. H. Irving and J. G. Kirkwood, “The statistical mechanical theory of transport processes .4. The Equations of Hydrodynamics,” Journal of Chemical Physics, vol. 18, pp. 817-829, 1950.
    [22]A. P. Sutton and J. Chen, “Long-range Finnis–Sinclair potentials,” Philosophical Magazine Letters, vol. 61, pp. 139-146, 1989
    [23]Y. Zhang, C. Z.Wang, M. I. Mendelev, F. Zhang, M. J. Kramer, and K. M. Ho, “Diffusion in a Cu-Zr metallic glass studied by microsecond-scale molecular dynamics simulations,” Physical Review B, vol. 91, p. 180201, 2015

    無法下載圖示 校內:2021-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE