| 研究生: |
陳俊宏 Chen, Chun-Hung |
|---|---|
| 論文名稱: |
太陽能煙囪能量轉換效能改善之探討 Energy Conversion Improvement Study of A Solar Chimney |
| 指導教授: |
陳世雄
Chen, Shih-Hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 270 |
| 中文關鍵詞: | 漸擴管 、煙囪效應 、熱驅動 、太陽能煙囪 |
| 外文關鍵詞: | Divergent Pipe, Solar Chimney, Stack Effect |
| 相關次數: | 點閱:68 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是藉由實驗的方式量測太陽熱能煙囪內部氣流溫度和流場分佈情形,並且深入的去探討影響煙罩整體流量的可能因素,做為未來改善太陽能煙囪發電效率的依據。本論文探討了幾種不同的集熱方式及煙管幾何外型對煙罩出口流量之影響,其中包含了煙罩入口的間隙大小改變、加熱板安裝熱交換鰭片以改變煙罩內溫度場、改善煙囪的熱散逸及幾款不同發散角度的煙囪等。首先探討1、3、5和10cm四款不同之煙罩入風口間隙,實驗中發現本實驗平台之最佳煙罩間隙為5cm,此最佳煙罩間隙做為後續實驗之比較基礎。接下來於加熱板上安裝上熱交換鰭片,欲藉由熱交換面積之增加來改變內部氣流之溫差,由實驗結果中可發現對於內部氣流之溫差有提升的趨勢,但於整體流量上並無明顯影響。其次,於壓克力煙管上做絕熱,以減少煙囪對外界之熱散逸,由實驗結果中可發現絕熱對於內部氣流之溫差及整體流量上皆無明顯影響,應是壓克力煙囪的熱散逸不大的原故。最後II是以金屬漸擴圓管來取代原有之壓克力圓管,欲藉由煙管幾何外形上的變化來改變煙管內部流場之壓力與速度分佈,漸擴圓管漸擴角度(錐度)分別為 2o、6 o、8 o三款,由實驗結果中可發現漸擴圓管對於內部氣流流速上有明顯提升,其中又以漸擴角度6 o效果最為顯著。漸擴管對於提升太陽能煙囪流量的結果,將有助於未來設計太陽能煙囪發電系統的參考。
The purpose of this study is to investigate experimentally the internal flow temperature and flow pattern distribution inside a solar chimney. Factors that affect the chimney outlet velocity and hence improvements for better mass flow are discussed to increase the power generation efficiency of the solar chimney. Different geometries of the chimney tower and various means of solar thermal collection are tested to determine the influence on the flow rate. The study of flow entrance height , ranging from 1, 3, 5, and 10cm, suggests a clearance of 5 cm can be the best for available apparatus. The increase of the heat transfer area by installing fins upon the heating plate for different mass flow rate and internal temperature shows an increase in internal temperature but no significant effect in outlet velocity. A further study was to block the chimney heat loss with insulation. However, the experiment shows that the insulation bids no benefits in either temperature difference or the outlet velocity. For chimney tower geometry effect, the original acrylic chimney tower was replaced by divergent metal ones, bearing divergent angle of 2°, 6°, and 8°. The experimental results suggest significant increase in internal flow velocity in each case, while the best performance lays in the 6° case.
參考文獻
1.Atit, K., and Tawit, C., “Effect of Tower Area Change on the Potential of Solar Tower,” SEE of Sustainable Energy and Environment, Vol.29,pp. 21-23, 2006.
2.Bilgen, E., and Rheault, J., “Solar Chimney Power Plants for High Latitudes,” Elsevier Journal of Solar Energy, Vol. 79, pp. 449-458, 2005.
3.Chen, Z. D., Bandopadhayay, P., Halldorsson, J., Byrjalsen, C., Heiselberg, P., and Li, Y., “An Experimental Investigation of a Solar Chimney Model with Uniform Wall Heat Flux,” Elsevier Journal of Building and Environment, Vol. 38, pp. 893-906, 2003.
4.Daia, Y. J., Huang, H. B., and Wang, R. Z., “Case Study of Solar Chimney Power Plants in Northwestern Regions of China,” Elsevier Journal of Renewable Energy, Vol. 28, pp. 1295-1340, 2002.
5.Daia, Y.J., Sumathyb, K. “Enhancement of Natural Ventilation in a Solar House with a Solar Chimney and a Solid Adsorption Cooling Cavity,” Elsevier Journal of Solar Energy, Vol.74, pp. 65-75, 2003.
6.Guohui, G., “Simulation of Buoyancy-Induced Flow in Open Cavities for Natural Ventilation,” Elsevier Journal of Energy and Buildings, Vol. 38, pp. 410-420, 2006.
7.Joseph, K., Boonlert, B., and Jongjit, H., “Ventilation Impact of a Solar Chimney on Indoor Temperature Fluctuation and Air Change in a School Building,” Elsevier of Energy and Buildings, Vol. 32, pp. 89-93, 1999.
8.Jörg, S., and Wolfgang, S., “Solar Chimneys,” Encyclopedia of Physical Science and Technology, 2000.
9.Jyotirmay, M., Sanjay, M., and Anupma, “Summer-Performance of Inclined Roof Solar Chimney for Natural Ventilation,” Elsevier Journal of Energy and Buildings, Vol. 38, pp. 1156-1163, 2006.
10.Johannes, P. P., and Detlev, G. K., “Solar Chimney Power Plant Performance,” ASME Journal of Solar Energy Engineering, Vol. 128, 2006.
11.Jörg, S., Rudolf, B., Wolfgang, S., and Gerhard W., “Design of Commercial Solar Updraft Tower Systems Utilization of Solar Induced Convective Flows for Power Generation,” Journal of Solar Energy Engineering, Vol. 127, 2007.
12.Marrco, A. D. S. B., Ramon, M. V., and Marcio, F. B. C., “Numerical Analysis of Natural Laminar Convection a Radial Solar Heater,” Elsevier Journal of Thermal Science, Vol. 38, pp. 42-50, 1998.
13.Miyazaki, T., Akisawa, A., and Kashiwagi, T., “The Effects of Solar Chimneys on Thermal Load Mitigation of Office Buildings Under the Japanese Climate,” Elsevier Journal of Renewable Energy, Vol. 31, pp. 987-1010, 2006.
14.Norton, B., and Ekechkwu, O. V., “Desing and Mesured Performance of a Solar Chimney for Natural Circulation Solar-Energy Dryers,” Elsevier Journal of Renewable Energy, Vol. 10, No. 1, pp. 81-90, 1996.
15.Ong, K. S., “A Mathematical Model of a Solar Chimney,” Elsevier Journal of Solar Energy, Vol. 28, pp. 1047-1060, 2003.
16.Ong, K. S., and Chow, C. C., “Performance of a Solar Chimney,” Elsevier Journal of Solar Energy, Vol. 74, pp. 1-17, 2003.
17.Pasumarthi, N., and Sherif, S. A., “Experimental and Theoretical Performance of a Demonstration Solar Chimney Model-Part Ⅱ: Experimental and Theoretical Results and Economic Analysis,” International Journal of Energy Research, Vol. 22, pp. 443-461, 1998.
18.Preeda, C., Jongjit, H., Belkacem, Z., Joseph, K., Sombat, T., and Maung, M. W., “Investigation on Thermal Performance of Glazed Solar Chimney Walls,” Elsevier Journal of Solar Energy, Vol. 80, pp. 228-297, 2006.
19.Schlaich, B., “Principle of Heat Storage Under the Roof Using Water-Filled Black Tubes,” Elsevier Journal of Solar Energy Engineering, 2002.
20.Theodor, W. V. B., Andreas, B., and Anthony, J. G.,“Pressure Drop in Solar Power Plant Chimneys,” ASME Journal of Solar Energy Engineering, Vol. 125, pp. 1055-1071, 2003.
21.Von Backstro¨m, T. W., and Gannon, A. J., “Solar Chimney Cycle Analysis with System Loss and Solar Collector Performance,” ASME Journal of Solar Energy Engineering, Vol. 122, pp. 133-137, 2000.
22.Von Backström, T. W., and Gannon, A. J., “Solar Chimney Turbine Characteristics,” ASME Journal of Heat Transfer, Vol. 76, pp. 235-241, 2004.
23.Wenting, D., Yuji, H., “Natural Ventilation Performance of a Double-Skin Facade with a Solar Chimney,” Elsevier of Energy and Buildings Vol. 37, pp. 411-418, 2005.
24.毛宏舉,“煙囪形狀對太陽能煙囪發電系統效率的影響, ”可再生能源期刊,05期 2006.
25.王一平,“太陽能煙囪綜合利用海水系統的初步研究, ”太陽能學報 ,04期 2006.