| 研究生: |
林佳慧 Lin, Chia-Hui |
|---|---|
| 論文名稱: |
NASICON化合物中MZr2(PO4)3 (M=Li, Na, K, Cs)之晶體結構與離子導電率 Crystal Structure and Ionic Conductivity in NASICON Compounds of MZr2(PO4)3 (M=Li, Na, K, Cs) |
| 指導教授: |
黃啓原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | NASICON 、離子通道 、離子導電率 |
| 外文關鍵詞: | NASICON, ion channel, ionic conductivity |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究引用無機晶體結構資料庫 (ICSD) 之前人文獻數據MZr2(PO4)3
(M=Li, Na, K, Cs)與Na1+xZr2SixP3-xO12 (0 < x < 3) 兩種系列成分,探討晶體結構與離子導電率關聯性,由於NASICON 化合物中鈉離子會經由氧離子組成之瓶頸 (bottleneck) 進行穿梭,利用Rietveld 精修法及Diamond 繪圖軟體計算離子通道中三角形及內切圓瓶頸大小,兩者趨勢一致。再以液相輔助固相反應法製備粉末,並使用XRD 進行煅燒粉末之相鑑定,以600℃/6 h-1000℃/12 h 兩階段煅燒可合成出接近單一相之NaZr2(PO4)3、Na2Zr2SiP2O12、Na3Zr2Si2PO12、KZr2(PO4)3 固溶體,及Na0.5K0.5Zr2(PO4)3 以兩相組成之部分固溶體,而Na3-xKxZr2Si2PO12(x=3, 1, 0.5, 0.1, 0.05) 因K+離子與Na+半徑差異較大,因此無法形成固溶體。將NaZr2(PO4)3、KZr2(PO4)3、Na0.5K0.5Zr2(PO4)3 加入2 wt% MgO,以1200℃/10 h 進行燒結,Na2Zr2SiP2O12、Na3Zr2Si2PO12 不添加燒結助劑下以1250℃/10 h 進行燒結,皆可使燒結相對密度達90%以上。最後將陶瓷體使用直流電量測導電率,以Na3Zr2Si2PO12 導電率最佳,且MZr2(PO4), (M=Na,Na0.5K0.5, K)之室溫離子導電率與瓶頸尺寸呈負相關,隨著K+含量愈高,離子通道愈大,導電率愈低。Na1+xZr2SixP3-xO12 (x=0, 1, 2) 之室溫離子導電率與瓶頸尺寸呈正相關,隨著Si4+含量增加,離子通道愈大,導電率愈高。
NASICON material is a promising solid-state electrolyte because of its distinctive crystal structure and high ionic conductivity. The bottleneck size for the ionic channel of crystal structure affects Na+ ionic conductivity. To discuss the relation between crystal structure and ionic conductivity, we cited the data about MZr2(PO4)3 (M=Li, Na, K, Cs) and Na1+xZr2SixP3-xO12 (0 < x < 3) from the ICSD database. In this study, we calculate the area of the bottleneck by the shape of a triangle and an inscribed circle. The powder of NASICON compounds is prepared by solution-assisted solid-state reaction and identified by X-ray diffraction. We adopted the Rietveld refinement approach and Diamond software to calculate the bottleneck size of the ion channel. The XRD pattern showed that nearly a single phase could be obtained for NaZr2(PO4)3, Na2Zr2SiP2O12, Na3Zr2Si2PO12, KZr2(PO4)3, and partial solid-solution could be obtained for Na0.5K0.5Zr2(PO4)3 through calcined at two-stage 600℃/6 h-1000℃/12 h. Adopting the same condition of calcination, Na3-xKxZr2Si2PO12 (x=3, 1, 0.5, 0.1, 0.05) solid-solution would not be formed and have several phases. Powders for NASICON compound was formed into a pellet with uniaxial compression. NaZr2(PO4)3, Na0.5K0.5Zr2(PO4)3, KZr2(PO4)3 was sintered at 1200℃/10 h contains 2wt% MgO and Na2Zr2SiP2O12, Na3Zr2Si2PO12 at 1250℃/10 h to obtain a relative density > 90%. The electrical conductivity of the ceramic body is measured with direct current analysis. We found that the ionic conductivity in room temperature of MZr2(PO4), (M=Na, Na0.5K0.5, K) is negatively related to the bottleneck size. Higher K+ content broadens the bottleneck size, but decreased the ionic conductivity. The room temperature ionic conductivity of Na1+xZr2SixP3-xO12 (x=0, 1, 2) is positively related to the bottleneck size. Higher Si4+ content broadens the bottleneck size and increased ionic conductivity.
[1]方程毅,【材料應用】從手機到電動車:無處不見的鋰電池,CASE PRESS/臺大科學教育發展中心,2014。(https://case.ntu.edu.tw/blog/?p=19261)
[2]Y. Shao, G. Zhong, Y. Lu, L. Liu, C. Zhao, Q. Zhang, Y.-S. Hu, Y. Yang and L. Chen, “A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity,” Energy Storage Materials, vol. 23, pp. 514-521, 2019.
[3]Z.-S. Hua, X.-J. Feng, X.-R. Wang and H.-F. Peng, “Effect of ion substitution on electrochemical properties of Nasicon Compounds,” Journal of the chinese ceramic society, vol. 45, no. 6, pp. 756-764, 2017.
[4]M. Guin, F. Tietz and O. Guillon, “New promising NASICON material as solid electrolyte for sodium-ion batteries: Correlation between composition, crystal structure and ionic conductivity of Na3+xSc2SixP3−xO12,” Solid state ionics, vol. 293, pp. 18-26, 2016.
[5]Q. Ma, M. Guin, S. Naqash, C.-L. Tsai, F. Tietz and O. Guillon, “Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors,” Chemistry of materials, vol. 28, no. 13, pp. 4821-4828, 2016.
[6]H. Park, M. Kang, Y.-C. Park, K. Jung and B. Kang, “Improving ionic conductivity of Nasicon (Na3Zr2Si2PO12) at intermediate temperatures by modifying phase transition behavior,” Journal of power sources, vol. 399, pp. 329-336, 2018.
[7]H.-B. Sun, J.-Z. Guo, Y. Zhang, T. Wei, Y.-X. Zhou, L.-L. Zhang, X.-L. Wu, Y. Huang and W. Luo, “High-voltage all-solid-state Na-ion-based full cells enabled by all NASICON-structured materials,” ACS applied materials interfaces, vol. 11, no. 27, pp. 24192-24197, Jul. 2019.
[8]P. Yadav and M. C. Bhatnagar, “Structural studies of NASICON material of different compositions by sol–gel method,” Ceramics international, vol. 38, no. 2, pp. 1731-1735, 2012.
[9]K. M. Bui, V. A. Dinh, S. Okada and T. Ohno, “Hybrid functional study of the NASICON-type Na3V2(PO4)3: crystal and electronic structures, and polaron-Na vacancy complex diffusion,” Physical chemistry chemical physics, vol. 17, no. 45, pp. 30433-9, Nov 11, 2015.
[10]R. Idczak, V. H. Tran, B. Świątek-Tran, K. Walczak, W. Zając and J. Molenda, “The effects of Mn substitution on the structural and magnetic properties of the NASICON-type Na3Fe2-xMnx(PO4)3 solid solution,” Journal of magnetism and magnetic materials, vol. 491, 2019.
[11]T. Liu, B. Wang, X. Gu, L. Wang, M. Ling, G. Liu, D. Wang and S. Zhang, “All-climate sodium ion batteries based on the NASICON electrode materials,” Nano energy, vol. 30, pp. 756-761, 2016.
[12]J. A. S. Oh, L. He, A. Plewa, M. Morita, Y. Zhao, T. Sakamoto, X. Song, W. Zhai, K. Zeng and L. Lu, “Composite NASICON (Na3Zr2Si2PO12) solid-state electrolyte with enhanced Na+ ionic conductivity: effect of liquid phase sintering,” ACS applied materials interfaces, vol. 11, no. 43, pp. 40125-40133, Oct. 2019.
[13]Z. Zhang, Z. Zou, K. Kaup, R. Xiao, S. Shi, M. Avdeev, Y. S. Hu, D. Wang, B. He, H. Li, X. Huang, L. F. Nazar and L. Chen, “Correlated migration invokes higher Na+‐ion conductivity in NaSICON‐type solid electrolytes,” Advanced energy materials, vol. 9, no. 42, 2019.
[14]M. Guin and F. Tietz, “Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries,” Journal of Power Sources, vol. 273, pp. 1056-1064, 2015.
[15]Y. Kim, H. Kim, S. Park, I. Seo and Y. Kim, “Na ion-conducting ceramic as solid electrolyte for rechargeable seawater batteries,” Electrochimica acta, vol. 191, pp. 1-7, 2016.
[16]S. Naqash, Q. Ma, F. Tietz and O. Guillon, “Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid state reaction,” Solid state ionics, vol. 302, pp. 83-91, 2017.
[17]V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-González and T. Rojo, “Na-ion batteries, recent advances and present challenges to become low cost energy storage systems,” energy and environmental science, vol. 5, no. 3, 2012.
[18]H.-P. Hong, “Crystal structures and crystal chemistry in the system Na1+ xZr2SixP3− xO12,” Materials research bulletin, vol. 11, no. 2, pp. 173-182, 1976.
[19]Hagman, L. O. and Kierkegaard, P., “The crystal strucuture of NaMe2(IV)(PO4)3; Me(IV) = Ge, Ti, Zr,” Acta chemica scandinavica, vol. 22, pp. 1822-1832, 1968.
[20]C.-Y. Huang, Thermal expansion behavior of sodium zirconium phosphate structure type materials, Ph.D thesis in Pennsylvania state university, 1990.
[21]J. Alamo, and R. Roy, “Crystal chemistry of the NaZr2(PO4)3, NZP or CTP, structure family,” Journal of materials science, vol. 21, no. 2, pp. 444-450, 1986.
[22]U. Vonalpen, M. F. Bell and H. H. Hofer “Compositional dependence of the electrochemical and structural parameters in the NASICON system (Na1+xSixZr2P3-xO12),” Solid state ionics, vol. 3-4, pp. 215-218, Aug. 1981.
[23]J. S. J. Boilot, G. Desplanches and D. Le Potier, “Phase transformation in Na1+ xSixZr2P3− xO12 compounds,” Materials research blletin, vol. 14, no. 11, pp. 1469-1477, 1979.
[24]A. G. Jolley, D. D. Taylor, N. J. Schreiber, E. D. Wachsman and B. Raveau, “Structural investigation of monoclinic‐rhombohedral phase transition in Na3Zr2Si2PO12 and doped NASICON,” Journal of the American ceramic society, vol. 98, no. 9, pp. 2902-2907, 2015.
[25]M.L. Di Vona, E. Traversa and S. Licoccia, “Nonhydrolytic synthesis of NASICON of composition Na3Zr2Si2PO12: a spectroscopic study,” Chemistry of materials, vol. 13, no. 1, pp. 141-144, 2001.
[26]A. Ignaszak, P. Pasierb, R. Gajerski and S. Komornicki, “Synthesis and properties of Nasicon-type materials,” Thermochimica Acta, vol. 426, no. 1-2, pp. 7-14, 2005.
[27]林居南編著;第二相對燒結的影響,精密陶瓷入門 (IV),工業技術研究院工業材料研究所編印,1991年。
[28]盧詩文,MZr2P3O12 (M=Na, K, Rb)的合成及其微結構與熱膨脹性質之關係,國立成功大學礦冶及材料科學系碩士學位論文,1993年。
[29]D. K. Agrawal and V. S. Stubican, “Synthesis and sintering of CaZr2P3O12-a low thermal expansion material,” Materials research bulletin, vol. 20, pp. 99-106, 1985.
[30]Gmelin institute, Fachinformationszentrum Karlsruhe (Germany) and the national institute of standards and technology (US), Inorganic crystal structure database (ICSD Web), 1913.
[31]M. Catti, N. Morgante and R. M. Ibberson, “Order-disorder and mobility of Li+ in the β′- and β-LiZr2(PO4)3 ionic conductors: a neutron diffraction study,” Journal of solid state chemistry, vol. 152, no. 2, pp. 340-347, 2000.
[32]M. Slijukic, B. Matkovic, B. Prodic and D. Anderson, “The crystal structure of KZr2(PO4)3,” Zeitschrift fur kristallographie, vol. 130, pp. 148-161, 1969.
[33]E. R. Gobechiya, Yu. K. Kabalov, V. I. Pet’kov and M. V. Sukhanov, “Crystal structures of double cesium zirconium and barium zirconium orthophosphates,” Crystallography Reports, vol. 49, pp. 741-746, 2004.
[34]Dr. Klaus Brandenburg and Dr. Holger Putz, Crystal impact (diamond software), University of Bonn, 1983.
[35]黃詩涵,以液相輔助固相反應法製備鋯磷矽酸鈉之離子導體及其阻抗分析,國立成功大資源工程學系碩士學位論文,2019。
[36]A.C. Larson and R.B. Von Dreele, General structure analysis system (GSAS), Los Alamos national laboratory, Report LAUR 86-748, 2004.
[37]H. M. Rietveld, “A profile refinement method for nuclear and magnetic
structures,” Journal of applied crystallography, International union of crystallography, Jun. 1969.
[38]R. M. Hazen, L. W. Finger, D. K. Agrawal, H. A. McKinstry and Anthony J. Perrotta, “High-temperature crystal chemistry of sodium zirconium phosphate (NZP),” Journal of materials research, vol. 2, No. 3, pp. 329-337, 1987.
[39]J. P. Boilot, G. Collin and Ph. Colomban, “Crystal structure of the true NASICON: Na3Zr2Si2PO12,” Materials research bulletin, vol. 22, pp. 669-676, 1987.
[40]J. P. Boilot, G. Collin and Ph. Colomban, “Relation structure-fast ion conduction in the NASICON solid solution, Journal of solid state chemistry, vol. 73, pp. 160-171, 1988.