簡易檢索 / 詳目顯示

研究生: 張簡琬真
Chang-Chien, Wan-Chen
論文名稱: 63Cu核磁共振研究具ZrCuSiAs結構之銅化合物
63Cu NMR study of Cu-based compounds with ZrCuSiAs-type structure
指導教授: 呂欽山
Lu, Chin-Shan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 46
中文關鍵詞: 核磁共振
外文關鍵詞: NMR
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是以核磁共振(NMR)的技術來量測同是屬於ZrCuSiAs 結構的ZrCuSi2,HfCuSi2和ZrCuGe2。選用量測63Cu的NMR頻譜來討論各個樣品的四重極效應、奈特位移及自旋晶格鬆弛時間。
    三個樣品的均向奈特位移量值均是負值,這是由於Cu的3d電子的重要貢獻,而這三個樣品的奈特位移值的變化是由ZrCuSi2,HfCuSi2 到ZrCuGe2逐漸增加,指出部份Cu 3d費米面態密度的增加。
    根據分析這三個樣品的Korringa constant 可以推論出每個樣品的費米面態密度,相對於其他銅化合物樣品研究的費米面態密度值是相當小的,這個結果與ZrCuSn2理論計算中指出Cu 3d 電子對於整體的費米面態密度貢獻是很小的相吻合,且由目前的核磁共振實驗研究可以得知在銅層鍵結的p-d混成軌域的強度和a/c值有很大的關聯,因此,費米面態密度和a/c值是呈正相關,而通常較低的費米面態密度代表有較多的電子參與成鍵使得穩定性相對會提高,因此由目前的研究可以知道同屬於ZrCuSiAs type的三個樣品中ZrCuSi2的穩定性比HfCuSi2 和 ZrCuGe2還要高。

    We have performed a systematic study of the ZrCuSiAs-type compounds ZrCuSi2, HfCuSi2, and ZrCuGe2 using 63Cu NMR spectroscopy. The quadrupole splitting, the Knight shift (K), as well as the spin-lattice relaxation rate (1/T1) of each individual compound have been identified. For all studied materials, the sign of the isotropic Knight shift is negative, indicating the important contribution from Cu 3d states. In addition, the magnitude of K gradually increases from ZrCuSi2, HfCuSi2, to ZrCuGe2, pointing to the enhancement of the partial Cu 3d Fermi-level density of states (DOS), Nd(EF). Based on the analysis of the Korringa constant (1/T1T), we can deduce the value of Nd(EF) for each material. It is apparent that the extracted Fermi-level DOS is quite small for each studied material as compared to other ordinary Cu-based metals. This finding is in good agreement with theoretical calculation on the isoelectronic ZrCuSn2, showing a minor contribution to the total Fermi-level DOS from Cu 3d electrons. Therefore, the present NMR observation provides an important information that the p-d hybridization within the Cu layers is strongly correlated to the ratio of a/c.
    Remarkably, the deduced Fermi-level DOS was found to increase with increasing the ratio of a/c. The lower Fermi-level DOS is often related to the fact that more electrons participate in bonding and get localized. Since the lower Fermi-level DOS is often related to the higher phase stability, the present investigation thus confirms that ZrCuSi2 is more stable than HfCuSi2 and ZrCuGe2 with respect to the ZrCuSiAs-type structure.

    摘要.....................................................Ⅰ Abstract.................................................Ⅱ 致謝.....................................................Ⅲ 目錄.....................................................Ⅳ 表目錄...................................................Ⅵ 圖目錄...................................................Ⅶ 第一章 前言.............................................1 第二章 核磁共振基本原理.................................3 2-1 黎曼效應..............................................3 2-2 線形..................................................4 2-3 奈特位移............................................. 6 2-4 四重極效應........................................... 9 2-5 運動方程式...........................................13 2-6 自旋晶格鬆弛時間.....................................16 第三章 樣品配製........................................19 3-1 樣品製作............................................ 19 3-2 製作樣品儀器........................................ 20 第四章 實驗儀器與量測..................................22 4-1 核磁共振儀.......................................... 22 4-2 NMR量測方法..........................................25 第五章 結果與討論......................................30 5-1 X-ray結果............................................30 5-2 線形與四重極效應.....................................34 5-3 奈特位移............................................ 38 5-4 自旋晶格鬆弛時間.................................... 40 第六章 結論............................................44 參考文獻.................................................45

    (1)R. Pöttgen and D. Johrendt, J. Chem. Sci. 63, 1135
    (2008)
    (2)W. B. Zhang, X. B. Xiao, W. Y. Yu, N. Wang, and B.Y.
    Tang , Phys. Rev. B 77, 214513 (2008)
    (3)L. S. Andrukhiv, Ya. P. Yarmolyuk, and L. A. Lysenko,
    Dok. Akad. Nauk. RSSR, 647 (1975)
    (4)F. Thirion, G. Venturini, B. Malaman, J. Steinmetz,
    and B. J. Roques, Less-Common Met. 95, 47 (1983)
    (5)H. Mukuda, N. Terasaki, H. Kinouchi, M. Yashima, Y.
    Kitaoka, S. Suzuki, S. Miyasaka, S. Tajima, K.
    Miyazawa, P. Shirage, H. Kito, H. Eisaki, and A. Iyo,
    J. Phys. Soc. Jpn. 77 , 093704 (2008)
    (6)B. D. Padalia, T. K. Hatwar, and M. N. Ghatikar , J.
    Phys. C: Solid State Phys. 16, 1537 (1983)
    (7)G. C. Cater, L. H. Bennett, and D. J. Kahan, Metallic
    Shift in NMR (1977)
    (8)W. D. Knight, Nuclear Magnetic Resonance Shift in
    Metals : Phys. Rev. 76, 1259 (1949)
    (9)G. Krill, P. Panissod, M. F. Lapierre, F. Gautier, C.
    Robert, and M. Nassr Eddine, J. Phys. C: Solid State
    Phys. 9, 1521 (1976)
    (10)J. Korringa, Physica 16, 601 (1950)
    (11)C. L. Fu, X . Wang, Y. Y. Ye, and K. M. Ho,
    Intermetallics 7, 179 (1999)
    (12)I. R. Shein, V. L. Kozhevnikov, and A. L.
    Ivanovskii , Phys. Lett. A 372, 5838 (2008)
    (13)V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii,
    arXiv: 0810.2606 (2008)
    (14)J. Dong , H. J. Zhang , G. Xu , Z. Li , G. Li , W.
    Z. Hu , D. Wu , G. F. Chen , X. Dai , J. L. Luo , Z.
    Fang, and N. L. Wang, EuroPhys. Lett. 83, 27006 (2008)
    (15)N. O. Koblyuk, V. M. Davydov, D. Fruchart, L. P.
    Romaka, R. V. Skolozdra, and J. Tobola, J. Alloy.
    Compd. 269, 29 (1998)

    下載圖示 校內:立即公開
    校外:2009-06-23公開
    QR CODE