簡易檢索 / 詳目顯示

研究生: 陳仁賢
Chen, Ren-Shian
論文名稱: 在頻域和時域減少通道資訊之封閉迴路的 多輸入多輸出-正交分頻多工調變系統
Channel State Information Reduction in Frequency and Time Domains for Closed-loop MIMO-OFDM Systems
指導教授: 張名先
Chang, Min-Xian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 44
中文關鍵詞: 通道資訊方向性高斯量化最小方差貼合參數化
外文關鍵詞: beamforming, least-squares fittings, parameterization, Gaussian quantization., CSI
相關次數: 點閱:157下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於多天線-多載波系統可以增加通道容量及改善錯誤機率並且可提昇傳輸效率,已在學術上討論許久。藉由回傳的通道資訊,傳送端可使用預先編碼器改善系統的效能。方向性向量是通道資訊的部份重要資訊,可以有效的應用在具有預先編碼器的系統上,而一些通道資訊簡化及有效率回傳的演算法已經陸續被提出。然而,能量分配、選擇性天線及多型預先編碼也是可以增加通道容量及改善傳輸效能的重要課題。為了建構同時具有方向性和能量分配等多功能的預先編碼器,接收端需要回傳估測後的通道響應給傳送端。
    在本篇論文,我們將通道響應參數化後達到通道資訊簡化的目的,此參數化過程中使用了退化的多項式模型和B-spline模型,這兩種模型的係數被萃取出來當作通道響應的參數,由於係數為高斯分佈,在多輸入多輸出-正交分頻多工調變的系統下,為了有效的回傳大量的多項式係數,我們使用有效率的高斯量化,來減少量化誤差。當子載波數量增大,為了參數化的準確度勢必需要更多的係數來回傳,這會使得回傳負載大量提升,但在這的同時、時域的脈衝響應各數是有限的,所以我們嘗試在直接時域做回傳,可以更進一步減少回傳的負載。模擬結果也顯示了具有預先編碼的多輸入多輸出-正交分頻多工調變系統及時變且頻率選擇性的通道環境下,我們所提出的演算法擁有很低的回傳負載,並且幾乎可以達到最佳的通道容量和不錯的錯誤效能。

    Multiple antennas multiple carriers systems have been attractive for a long time due to its outstanding capacity, error performance and throughput. The transmitter could apply the precoding based on the fed-back channel state information (CSI). The beamforming vectors, which are essential CSI, could be applied in precoded multiple-input multiple-output (MIMO) systems and some algorithms of CSI reduction and efficient feedback have been proposed. However, the power allocation, antenna selection and multi-mode precoding which can be applied in precoder are also important issues for increasing the channel capacity and improving the transmission performance. To implement a multi-function precoder which can exercise not only the beamforming but also the power allocation, antenna selection and so on, the receiver needs to feed back the estimated channel responses (CRs) to the transmitter.
    In this thesis, we use the polynomial coefficients feedback algorithms based on the parameterization of CRs based the regression polynomial model and B-spline model. The coefficients of both methods are extracted as the parameters of CRs. To efficiently return the large amount of the polynomial coefficients for the multiple-input multiple-output with orthogonal frequency-division multiplexing (MIMO-OFDM) systems, we use efficient quantization algorithms based on the Gaussian quantization (GQ). Considering that the number of delay taps is finite, we also propose time domain CSI feedback approach. No matter how feeding back in frequency domain or in time domain, the simulation results show that the proposed algorithms could attain the upper bound of channel capacity and result in outstanding error performance for the precoded MIMO-OFDM systems with low feedback load in time-varying and frequency-selective channels.

    Chinese Abstract I English Abstract III Acknowledgement V Contents VI List of Tables VII List of Figures VIII Chapter 1 1 Introduction 1 Chapter 2 4 Closed-loop MIMO-OFDM Systems 4 2.1 Channel Model 4 2.2 Closed-loop MIMO-OFDM Systems 6 2.3 Vector Quantization 10 2.4 Closed-loop MIMO-OFDM Systems with Finite-Rate Feedback 12 2.4.1 Simulation Result 13 Chapter 3 17 Channel State Information Reduction 17 3.1 Introduction 17 3.2.1 Parameterization-Polynomial 18 3.2.2 Parameterization-B-spline 21 3.3 Parametric Distortion 24 3.4.1 Gaussian Quantization 26 3.4.2 Coefficients Analyse 29 3.4.3 Normalize 30 3.5 Simulation Results 32 Chapter 4 36 Time Domain Feedback 36 4.1 Motivation 36 4.2 Feedback load compare 37 4.3 Simulation Results 38 Chapter 5 41 Conclusion 41 Bibliography 42

    [1] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp.1451-1458, Oct. 1998.
    [2] L. Zheng, D.N.C Tse, “Diversity and multiplexing a fundamental tradeoff in multiple-antenna channels,” IEEE Trans. Inform. Theory, vol. 49, No. 5, pp. 1073-1096, May 2003.
    [3] A. Goldsmith, S. A. Jafar, N. Jindal, S. Vishwanath, “Capacity limits of MIMO channels,” IEEE Journal on Select. Areas Commun., vol. 21, No. 5, pp. 684-702, June 2003.
    [4] H. Sampath, P. Stoica, and A. Paulraj, “Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion,” IEEE Trans. Commun., vol. 49, no. 12, pp. 2198-2206 Dec. 2001.
    [5] A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath, “Optimal designs for space-time linear precoders and decoders,” IEEE Trans. Signal Processing, vol. 50, no. 5, pp. 1051-1064, May. 2002.
    [6] S. Zhou, G. B. Giannakis, “Optimal transmitter eigen-beamforming and space-time block coding based on channel mean feedback,” IEEE Trans. Signal Processing, vol. 50, no. 10, pp. 2599-2613 ,Oct. 2002.
    [7] J. C. Roh and B. D. Rao, “Transmit beamforming in multiple-antenna systems with finite rate feedback: a VQ-based approach,” IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 1101-1112, Mar. 2006.
    [8] J. C. Roh and B. D. Rao, “Design and analysis of MIMO spatial multiplexing systems with quantized feedback,” IEEE Trans. Signal Processing, vol. 52, no. 8, pp. 2874-2886, Aug. 2006.
    [9] B. C. Banister, J. R. Zeidler, “Feedback assisted transmission subspace tracking for MIMO systems”, IEEE Trans. Select. Areas Commun, vol. 21, no. 3, pp. 452-463, Apr. 2003.
    [10] J. Yang and D. B. Williams, “Transmission subspace tracking for MIMO Systems with low-rate feedback,” IEEE Trans. Commun., vol. 55, no. 8, pp.1629-1639, Aug. 2007.
    [11] J. Choi and R. W. Heath, Jr., “Interpolation based transmit beamforming for MIMO-OFDM with limited feedback,” IEEE Trans. Signal Processing, vol. 53, no. 11, pp. 4125-4135, Nov. 2005.
    [12] J. Choi, B. Mondal, and R. W. Heath, Jr., “Interpolation based unitary precoding for spatial multiplexing MIMO-OFDM with limited feedback,” IEEE Trans. Signal Processing, vol. 54, no. 12, pp. 4730-4740, Dec. 2006.
    [13] N. Khaled, B. Mondal, G. Leus, R. W. Heath Jr., F. Petr′e, “Interpolation-Based Multi-Mode Precoding for MIMO-OFDM Systems with Limited Feedback,” IEEE Trans. Wireless Commun., vol. 6, no. 3, pp. 1003-1013, Mar. 2007.
    [14] T. Pande, D. J. Love, and J. V. Krogmeier, “A weighted least squares approach to precoding with pilots for MIMO-OFDM,” IEEE Trans. Signal Processing, vol. 54, no. 10, pp. 4067-4073, Oct. 2006.
    [15] H. Zhang, Y. Li, V. Stolpman, and N. V. Waes, “A reduced CSI feedback approach for precoded MIMO-OFDM systems,” IEEE Trans. Wireless Commun., vol. 6, no. 1, pp. 55-58, Jan. 2007.
    [16] S. Zhou, B. Li, and P. Willett, “Recursive and trellis-based feedback reduction for MIMO-OFDM with rate-limited feedback,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3400-3405, Dec. 2006.
    [17] L. Liu and H. Jafarkhani, “Successive transmit beamforming algorithms for multiple-antenna OFDM systems,” IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1512-1522, Apr. 2007.
    [18] R. W. Heath, Jr., and D. J. Love, “Multimode antenna selection for spatial multiplexing systems with linear receivers,” IEEE Trans. Signal Processing, vol. 53, no. 8, pp. 3042-3056, Aug. 2005.
    [19] M. X. Chang and Y. T. Su, “Model-based channel estimation for OFDM signals in Rayleigh fading,” IEEE Trans. Commun., vol. 50, pp. 540-544, Apr. 2002.
    [20] M. X. Chang and Y. T. Su, “Performance analysis of equalized OFDM systems in Rayleigh fading,” IEEE Trans. Wireless Commun., vol. 1, pp. 721-732, Oct. 2002.
    [21] D.J. Love, R.W. Heath. Jr., W. Santipach, M.L. Honig, “What is the value of limited feedback for MIMO channels” IEEE Commun. Mag vol. 42, No. 10, pp. 54-59, Oct. 2004.
    [22] L. Yunxin and H. Xiaojing, "The simulation of independent Rayleigh faders,", IEEE Trans. Commun.s, vol. 50, pp. 1503-1514, 2002.
    [23] V. Erceg, et. al., “IEEE P802.11 Wireless Lans: TGn Channel Models,” IEEE 802.11-03/940r4, 2004.
    [24] S. Haykin, “Communication System,” 4th ed. John Wiley & Sons, New Jersey, 2001.
    [25] B. Vucetic, J. Yuan, “Space-Time Coding,” John Wiley & Sons, England, 2003.
    [26] Y. V. Zakharov and T. C. Tozer, “Local splines in signal processing applications: low complexity, high accuracy” Communication Research Group, Department of Electronics, University of York, York YO10 5DD,UK.
    [27] Y. V. Zakharov and T. C. Tozer, ”Local spline approximation of time-varying channel model,” ELECTRONICS LETTERS 8th November 2001 Vol. 37 No. 23.
    [28] Michael Unser, Member, IEEE, Akram Aldroubi, and Murray Eden, Life Felloe, IEEE,”B-Spline Signal Processing: Part I-Theory”, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 2. FEBRUARY 1993.
    [29] Michael Unser, Member, IEEE, Akram Aldroubi, and Murray Eden, Life Felloe,
    IEEE,” B-Spline Signal Processing: Part II-Efficient Design and Applications” IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 2. FEBRUARY 1993.
    [30] Yuriy V. Zakharov, Member, IEEE, Tim C. Tozer, Member, IEEE, and Jonathan F. Adlard,”Polynomial Spline-Approximation of Clark’s Model” IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 5. MAY 2004
    [31] Faculty of Mathematics and Mechanics, Moscow State University, 119 899, Moscow, Russia,”Spline Approximation of random processes and design problems”Journal of Statistical Planning and Inference 84 (2000) 249-262.

    下載圖示 校內:2010-07-14公開
    校外:2010-07-14公開
    QR CODE