簡易檢索 / 詳目顯示

研究生: 徐依辰
Hsu, Yi-Chen
論文名稱: 研究鈣離子對於IP致效劑誘導PMA前處理HEL細胞分化所造成的影響
The study of the role of calcium on IP agonist induced cell differentiation from phorbol ester treated human erythroleukemia cells
指導教授: 簡偉明
Kan, Wai-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 66
中文關鍵詞: 鈣離子成熟 DC 細胞IP 致效劑
外文關鍵詞: dendritic cells, PMA, calcium
相關次數: 點閱:155下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類紅白血病 (human erythroleukemia,HEL)細胞經過PMA處理之後會分化成為類單核球/巨噬細胞之貼壁細胞。過去實驗室研究發現,在PMA處理HEL細胞之後,加入IP致效劑 BMY45778會改變PMA誘導HEL分化的型態,產生棘狀細胞樣的(Dendrytic cell-like, DC)分化。經由表面抗原分析實驗得知,IP 致效劑增加棘狀細胞專一性標誌CD83以及HLA-DR的表現;而在功能分析中也顯示,HEL細胞經過 PMA 處理過後加入IP致效劑 BMY45778,其吞噬能力下降,而刺激 T 細胞增生的能力增加,這是棘狀細胞的特色。然而棘狀細胞標誌表現量與促進T細胞增生的的幅度很少,推測IP致效劑誘導分化的棘狀細胞為未成熟的棘狀細胞( immature dendritic cell, iDC )。
    因此我們便有興趣去了解如何使未成熟 DC 變成成熟 DC (mature DC),去建立一個階段性誘導 DC 分化的模型。經由文獻得知,鈣離子的訊息傳遞對於棘狀細胞的成熟扮演著重要的角色。因此我們進一步使用 calcium ionophore (CI ),A23187來促進細胞內鈣離子增加,去觀察對於 DC 細胞成熟的影響。從細胞型態來看,在處理 IP 致效劑三天後加入CI 會使細胞突觸更明顯增加,增強細胞貼附性質的型態;然而在PMA處理後的HEL細胞加入IP致效劑誘導未成熟的DC分化時,並沒有偵測到鈣離子的流入。進一步去分析表面抗原,得知 CI 會明顯促進 CD83、HLA-DR 表現,並會更進一步抑制細胞吞噬FITC- BSA的能力,但是不影響經由接受體所媒介的吞噬FITC- dextran作用。我們認為 CI 可以透過促進IP誘導未成熟的DC細胞其CD83、HLA-DR的表現增加,抑制巨細胞吞噬作用進而促進其成熟化,雖然CI對於接受體吞噬作用沒有影響。因此HEL細胞在PMA投予之後可以分化成為單核球/巨噬細胞,IP致效劑可進一步促進細胞分化成為未成熟的DC細胞,而我們可能可以利用CI誘導DC細胞成熟幫助我們去建立一個階段性分化成為成熟DC細胞的研究模型。

    HEL (Human erythroleukemia cels) cells differentiated into monocytic/macrophage- like cells after PMA treatment. In our previous studies, we found that IP receptor agonists BMY45778 promoted the morphology change with dendritic cell (DC) -like differentiation in PMA treated HEL cells. Surface marker analysis of these dendritic- like cells showed that IP agonists increased DC-associated markers, CD83 and HLA-DR expression. In functional analysis, IP agonists downregulated the phagocytotic activity on PMA treated HEL cells and stimulated T-cell proliferation, which are characteristic of dendritic cells. However, according to the low DC surface marker expression and T cell proliferation activity, we suggested that IP agonists induced immature DC differentiation from PMA treated HEL cells.
    Therefore we were interested in induction of immature DC maturation, and it may provide us a stepwise model system to study DC differentiation and maturation. Calcium signaling plays an important role in DC maturation. In order to establish a stepwise DC maturation model, we used A23187, a calcium ionophore (CI) which increased intracellular calcium, to study the effect of calcium on immature DC. After treatment of IP agonists for three days and CI for one day, CI promoted morphology change of hair-like cytoplasmic projection and increased adhesion cells. However, we did not detect any calcium influx after IP agonists were added in PMA treated HEL cells to induce immature DC differentiation. Moreover, CI obviously increased cell-surface CD83, HLA-DR expression, inhibited macropinocytosis activity of FITC- BSA, but has no effect on receptor- mediated phagocytosis of FITC-dextran. In conclusion, we suggested that CI could induce IP derived immature DC maturation by obviously increasing DC specific marker CD83, HLA-DR expression and inhibiting macropinocytosis activity without interfering with receptor- mediated phagocytosis. Therefore HEL cells differentiated into monocytic/macrophage like cells after PMA treatment, and IP agonists induced monocytic/macrophage like cells differentiate into immature DC. We may use CI to promote immature DC maturation and provided us a stepwise differentiation and maturation model of dendritic cells.

    中文摘要…………………………………………………… I 英文摘要…………………………………………………… III 縮寫表……………………………………………………… VII 壹、緒論…………………………………………………… 1 貳、實驗材料以及方法…………………………………… 13 參、實驗結果……………………………………………… 24 肆、實驗討論……………………………………………… 31 伍、參考文獻……………………………………………… 39 陸、圖表…………………………………………………… 48

    Aicher, A., Shu, G. L., Magaletti, D., Mulvania, T., Pezzutto, A., Craxton, A., Clark, E. A. Differential role for p38 mitogen-activated protein kinase in regulating CD40-induced gene expression in dendritic cells and B cells. J. Immunol. 163: 5786–5795, 1999

    Aliprantis, A.O., R.B. Yang, M.R. Mark, S. Suggett, B. Devaux, J.D. Radolf, G.R. Klimpel, P. Godowski, A. Zychlinsky. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285: 736–39, 1999

    Ammon, C., K. Mondal, R. Andreesen, S.W. Krause, Differential expression of the transcription factor NF-kappaB during human mononuclear phagocyte differentiation to macrophages and dendritic cells, Biochem. Biophys. Res. Commun. 268: 99–105, 2000

    Ardeshna, K. M., Pizzey, A. R., Devereux, S., Khwaja, A. The PI3 kinase, p38 SAP kinase, and NF-κB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 96: 1039–1046, 2000

    Auwerx , J.H., Chait A., Wolfbauer G.. and Deeb SS. Loss of Copper-Zinc Superoxide Dismutase Gene Expression in Differentiated Cells of Myelo-Monocytic Origin. Blood 74: 1807-1810, 1989

    Bagley, K. C., S.F. Abdelwahab, R.G. Tuskan, and G.K. Lewis, Calcium signaling through phospholipase C activates dendritic cells to mature and is necessary for the activation and maturation of dendritic cells induced by diverse agonists. Clin Diagn Lab Immunol. 11: 77–82, 2004

    Banchereau, J., R.M. Steinman. Dendritic cells and the control of immunity. Nature 392: 245–52, 1998

    Banchereau. J., Francine Briere,Christophe Caux, Jean Davoust, Serge Lebecque, Yong-Jun Liu, Bali Pulendran1, and Karolina Palucka, Immunobiology of dendritic cells. Annu. Rev. Immunol. 18: 767–811, 2000

    Bell, D., J.W. Young, J. Banchereau. Dendritic cells. Adv. Immunol. 72: 255–324, 1999

    Berges C, Naujokat C, Tinapp S, Wieczorek H, Hoh A, Sadeghi M, Opelz G, Daniel V. A cell line model for the differentiation of human dendritic cells. Biochem Biophys Res Commun. 333(3): 896-907, 2005

    Berlanga O., Bobe R., Becker M., Murphy G., Leduc M., Bon C., Barry FA., Gibbins JM., Garcia P., Frampton J. and Watson SP. Expression of the Collagen Receptor Glycoprotein VI During Megakaryocyte Differentiation. Blood. 96: 2740-2745, 2000

    Berthier R., Chapel A., Schweitzer A., and Andrieux A. β2 Integrins mediate adherent phenotype of human erythroblastic cell lines after phorbol 12-myristate 13-acetate induction. Biochem. J. 309: 491-497, 1995

    Blandine, de S.V., Isabelle, F.V., Massacrier C., Gaillard C., Vanbervliet B., Aït-Yahia S., Banchereau J., Liu YJ., Lebecque S. and Caux C. The Cytokine Profile Expressed by Human Dendritic Cells Is Dependent on Cell Subtype and Mode of Activation. J. Immunol. 160: 1666-1676, 1998

    Borkowski T.A., J.J. Letterio, A.G. Farr, M.C. Udey. A role for endogenous transforming growth factor β1 in Langerhans cell biology: the skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 184: 2417–22, 1996

    Brightbill, H.D., D.H. Libraty, S.R. Krutzik, R.B. Yang, J.T. Belisle, J.R. Bleharski, M. Maitland, M.V. Norgard, S.E. Plevy, S.T. Smale, P.J. Brennan, B.R. Bloom, P.J. Godowski, R.L. Modlin. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285: 732–36, 1999

    Bruno, L., P. Res, M. Dessing, M. Cella, H. Spits. 1997. Identification of a committed T cell precursor population in adult human peripheral blood. J. Exp. Med. 185: 875–84, 1997

    Burkly, L., C. Hession, L. Ogata, C. Reilly, L. A. Marconi, D. Olsen, R. Tizaid, R. Cate, and D. Lo. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373:531, 1995

    Caux, C., C. Dezutter-Dambuyant, D. Schmitt, J. Banchereau. GM-CSF and TNF-a cooperate in the generation of dendritic Langerhans cells. Nature 360: 258–61, 1992

    Caux, C., C. Massacrier, B. Vanbervliet, B. Dubois, I. Durand, M. Cella, A. Lanzavecchia, J. Banchereau. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony- stimulating factor plus tumor necrosis factor a: II. Functional analysis. Blood. 90:1458–70, 1997

    Cella, M., D. Jarrossay, F. Facchetti, O. Alebardi, H. Nakajima, A. Lanzavecchia, M. Colonna. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5: 919–23

    Chao, D., P. Bahl, S. Houlbrook, L. Hoy, A. Harris, J.M. Austyn, Human cultured dendritic cells show differential sensitivity to chemotherapy agents as assessed by the MTS assay, Br. J. Cancer 81: 1280–1284, 1999

    Chu, C. L. and Lowell, C. A. The Lyn tyrosine kinase regulates dendritic cell generation and maturation. The Journal of Immunology, 175: 2880–2889, 2005

    Davis, T.A., A.A. Saini, P.J. Blair, B.L. Levine, N. Craighead, D.M. Harlan, C.H. June, K.P. Lee, Phorbol esters induce differentiation of human CD34+ hemopoietic progenitors to dendritic cells: evidence for protein kinase C-mediated signalling, J. Immunol. 160: 3689–3697, 1998

    Faries, M.B., I. Bedrosian, S. Xu, G. Koski, J.G. Roros, M.A. Moise, H.Q. Nguyen, F.H. Engels, P.A. Cohen, B.J. Czerniecki, Calcium signaling inhibits interleukin-12 production and activates CD83(+) dendritic cells that induce Th2 cell development. Blood. 98: 2489–2497, 2001

    Fearon, D.T., R.M. Locksley. The instructive role of innate immunity in the acquired immune response. Science 272: 50–53, 1996

    Feoktistov, I., Breyer, R. M., Biaggioni, I. Prostanoid Receptor with a Novel Pharmacological Profile in Human Erythroleukemia Cells. Biochem. Pharmacol. 54: 917-926, 1997

    Flores-Romo, L., P. Bjork, V. Duvert, C. Van Kooten, S. Saeland, and J. Banchereau. CD40 ligation on human cord blood CD34+ hematopoietic progenitors induces their proliferation and differentiation into functional dendritic cells. J. Exp. Med. 2: 341, 1997

    Garrett, W. S., Chen, L. M., Kroschewski,R. et al. Developmental Control of Endocytosis in Dendritic Cells by Cdc42. Cell,102: 325-334, 2000

    Germain, R.N. MHC-Dependent Antigen Processing and Peptide Presentation:Providing Ligands for T Lymphocyte Activation. Cell 76: 287-299, 1994.

    Hart, D.N. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90: 3245–87, 1997

    Herrmann, T.L., C. T. Morita, K. Lee, and D. J. Kusner, Calmodulin kinase II regulates the maturation and antigen presentation of human dendritic cells. J. Leukoc. Biol. 78: 1397-407, 2005

    Hoffmann, J.A., F.C. Kafatos, C.A. Janeway, R.A. Ezekowitz. Phylogenetic perspectives in innate immunity. Science 284: 1313–18, 1999

    Hsu, S.F., P. J. O’Connell, V.A. Klyachko, M. N. Badminton, A.W. Thomson, M.B. Jackson, D. E. Clapham, G. P. Ahern, Fundamental Ca+2 signaling mechanisms in mouse dendritic cells: CRAC is the major Ca+2 entry pathway. The Journal of Immunology, 166: 6126-6133, 2001

    Ito, T., M. Inaba, K. Inaba, J. Toki, S. Sogo, T. Iguchi, Y. Adachi, K. Yamaguchi, R. Amakawa, J. Valladeau, S. Saeland, S. Fukuhara, S. Ikehara. A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of langerhans cells. J. Immunol. 163: 1409–19, 1999

    Jenkins, M. K., A. Khoruts, E. Ingulli, D.l L. Mueller, S. J. McSorley, R. L. Reinhardt, A. Itano, K. A. Pape. In vivo activation of antigen- specidic CD4 T cells. Annu. Rev. Immunol. 19: 23–45, 2001

    Jiang F., Jia Y., and Cohen I. Fibronectin- and Protein Kinase C-Mediated Activation of ERK/MARK are Essential for Proplateletlike Formation. Blood 99: 3579-3584, 2002.

    Jonuleit, H., U. Kuhn, G. Muller, K. Steinbrink, L. Paragnik, E. Schmitt, J. Knop, A.H. Enk, Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions, Eur. J. Immunol. 27: 3135–3142, 1997

    Kannagi R. Papayannopoulou T., Yokochi T., Chait A., andHuman Erythroleukemia Cell Line (HEL) Undergoes a Drastic Macrophage-Like Shift With TPA. Blood .62: 832-845, 1983

    Kiertscher, S. M., and M. D. Roth. Human CD14+ leukocytes acquire the phenotype and function of antigen-presenting dendritic cells when cultured in GM-CSF and IL-4. J. Leukocyte Biol. 59: 208, 1996

    Koski, G. K., Gretchen N. Schwartz, David E. Weng, Brian J. Czerniecki, Charles Carter, Ronald E. Gress, and Peter A. Cohen. Calcium Mobilization in Human Myeloid Cells Results in Acquisition of Individual Dendritic Cell-Like Characteristics Through Discrete Signaling Pathways. The Journal of Immunology, 163: 82-92, 1999

    Lambrecht, B.N., B. Salomon, D. Klatzmann, R.A. Pauwels. Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice. J. Immunol. 160: 4090–97, 1998

    Lardon, F., H.W. Snoeck, Z.N. Berneman, V.F. Van Tendeloo, G. Nijs, M. Lenjou, E. Henckaerts, C.J. Boeckxtaens, P. Vandenabeele, L.L. Kestens, D.R. Van Bockstaele, G.L. Vanham, Generation of dendritic cells from bone marrow progenitors using GM-CSF, TNF-alpha, and additional cytokines: antagonistic effects of IL-4 and IFN-gamma and selective involvement of TNFalpha receptor-1, Immunology 91: 553–559, 1997

    Lindner, I., Kharfan-Dabaja, M.A., Ayala, E., Kolonias, D., Carlson, L.M., Beazer-Barclay Y., Scherf U., Hnatyszyn JH. and Lee KP. Induced Dendritic Cell Differentiation of Chronic Myeloid Leukemia Blasts Is Associated with Down-Regulation of BCR-ABL. J. Immunol. 171: 1780-1791, 2003

    Long, M.W., Heffner CH., Williams, J.L., Peters C., and Prochownik EV. Regulation of Megakaryocyte Phenotype in Human Erythroleukemia Cells. J. Clin. Invest. 85, 1072-1084, 1990

    Louis, D.C., J. B. Woodcock, K. P. Lee, Evidence for distinct intracellular signaling pathways in CD34+ progenitor to dendritic cell differentiation from a human cell line model. The Journal of Immunology, 162: 3237–3248, 1999

    Luft, T., K.C. Pang, E. Thomas, P. Hertzog, D.N. Hart, J. Trapani, J. Cebon, Type I IFNs enhance the terminal differentiation of dendritic cells. J. Immunol. 161: 1947–1953, 1998

    Lyakh, L. A., Gary K. Koski, William Telford, Ronald E. Gress, Peter A. Cohen, and Nancy R. Rice. Bacterial lipopolysaccharide, TNF-α, and calcium ionophore under serum-free conditions promote rapid dendritic cell-Like differentiation in CD14+ monocytes through distinct Pathways that activate NF-κB, J Immunol . 165: 3647-3655, 2000

    Manz, M.G., Traver, D., Miyamoto, T., Weissman, I.L. and Akashi, K. “Dendritic cell potentials of early lymphoid and myeloid progenitors”, Blood , 97: 3333–3341, 2001

    Martin P. HEL Cells: A New Human Erythroleukemia Cell Line with Spontaneous and Induced Globin Expression. Science 216: 1233-1235, 1982

    Matzinger P. 1994. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12:991–1045, 1994

    Mellman, I. and Steinman, R.M. Cell. 10: 255-258, 2001

    Mommaas, A.M., A.A. Mulder, R. Jordens, C. Out, M.C. Tan, P. Cresswell, P.M. Kluin, F. Koning. Human epidermal Langerhans cells lack functional mannose receptors and a fully developed endosomal/lysosomal compartment for loading of HLA class II molecules. Eur. J. Immunol. 29: 571–80, 1999

    Muzio, M., G. Natoli, S. Saccani, M. Levrero, A. Mantovani. The human toll signaling pathway: divergence of nuclear factor κB and JNK/ SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J. Exp. Med. 187:2097–101, 1998

    Nakahara, T., Y.Moroi, H. Uchi, M. Furue, Differential role of MAPK signaling in human dendritic cell maturation and Th1/Th2 engagement. Journal of Dermatological Science. 42: 1-11, 2006

    Nakajima, M., Yamamoto, M. , Ushikubi, F., Okuma,M., Fujiwara,M. and Narumiya, S., Biochem. Biophys. Res.Commun, 158: 958-65, 1989

    O’Neill, H.C., H.L. Wilson, Limitations with in vitro production of dendritic cells using cytokines, J. Leukoc. Biol. 75: 600–603, 2004

    Palucka, K., J. Banchereau. 1999. Linking innate and adaptive immunity. Nat. Med. 5: 868–70, 1999

    Papayannopoulou T., Nakamoto B., Kurachi S., Tweeddale M. and Messner H. Surface Antigenic Profile and Globin Phenotype of Two New Human Erythroleukemia Lines:Characterization and Interpretataions. Blood 72: 1029-1038, 1988

    Papayannopoulou T., Yokochi T., Nakamoto B. and Martin P. The Surface Antigen Profile of HEL Cells. Globin Gene Expression and Hematopoietic Differentiation , 277-292, 1983

    Papayannopoulou, Th., Nakamoto,B., Yokochi, T.,Chait, A. and Kannagi . Blood ,62: 832-845, 1983

    Pichowski, J.S., M. Cumberbatch, R.J. Dearman, D.A. Basketter, I. Kimber, Allergen-induced changes in interleukin 1 beta (IL-1 beta) mRNA expression by human blood-derived dendritic cells: inter-individual differences and relevance for sensitization testing. J. Appl. Toxicol. 21: 115–121, 2001

    Pickl, W. F., O. Majdic, P. Kohl, J. Stockl, E. Riedl, C. Scheinecker, C. Bello-Fernandez, and W. Knapp. Molecular and functional characteristics of dendritic cells generated from highly purified CD14+ peripheral blood monocytes. J. Immunol. 157: 3850, 1996

    Ramadan, G.., Schmidt, R.E., and Schubert, J. In Vitro Generation of Human CD86+ Dendritic Cells from CD34+ Haematopoietic Progenitors by PMA and in Serum-Free Medium. Clin. Exp. Immunol. 125: 237-244, 2001

    Rieser ,C., G. Bock, H. Klocker, G. Bartsch, M. Thurnher, Prostaglandin E2 and tumor necrosis factor alpha cooperate to activate human dendritic cells: synergistic activation of interleukin 12 production, J. Exp. Med. 186:1603–1608, 1997

    Rissoan, M.C., V. Soumelis, N. Kadowaki, G. Grouard, F. Briere, R. de Waal Malefyt, Y.J. Liu. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283:1183–86, 1999

    Reddy, A., M. Sapp, M. Feldman, M. Subklewe, and N. Bhardwaj. A monocyte conditioned medium is more effective than defined cytokines in mediating the terminal maturation of human dendritic cells. Blood 90: 3640, 1997

    Saccani S., S. Pantano, G. Natoli, Modulation of NF-kappaB activity by exchange of dimmers, Mol. Cell. 11: 1563–1574, 2003

    de Saint-Vis, B., I. Fugier-Vivier, C. Massacrier, C. Gaillard, B. Vanbervliet, S. Ait-Yahia, J. Banchereau, Y.J. Liu, S. Lebecque, C. Caux. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J. Immunol. 160: 1666–76, 1998

    Santini, S.M., C. Lapenta, M. Logozzi, S. Parlato, M. Spada, T. Di Pucchio, F. Belardelli, Type I IFN as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice, J. Exp. Med. 191: 1777–1788, 2000

    Sheth, S. B. et al. Distribution of prostaglandin IP and EP receptor subtypes and isoforms in platelets and human umbilical artery smooth muscle cells. Biritish J. Haema.. 102, 1204-1211, 1998

    Somasundaram, B., M. J. Mason and M. P. Mahaut-Smith, Thrombin-dependent calcium signalling in single human erythroleukaemia cells. Journal of Physiology. 501: 485-495, 1997

    Strobl, H., C. Bello-Fernandez, E. Riedl, W.F. Pickl, O. Majdic, S.D. Lyman, W. Knapp. flt3 ligand in cooperation with transforming growth factor-β1 potentiates in vitro development of Langerhans- type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions. Blood 90:1425–34, 1997

    Tsuji T., Waga I., Tezuka K., Kamada M., Yatsunami K. and Kodama H. Integrin β2 (CD18)-Mediated Cell Proliferation of HEL Cells on a Hematopoietic-Supportive Bone Marrow Stromal Cell Line, HESS-5 Cells. Blood 91: 1263-1271, 1998

    Verhasselt ,V., C. Buelens, F. Willems, D. De Groote, N. Haeffner- Cavaillon, M. Goldman, Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: evidence for a soluble CD14-dependent pathway, J. Immunol. 158: 2919– 2925, 1997

    Vidalain, P. O., Azocar, O., Servet-Delprat, C., Rabourdin-Combe, C., Gerlier, D., Manie, S. CD40 signaling in human dendritic cells is initiated within membrane rafts. EMBO J. 19: 3304–3313, 2000

    West, M.A., Prescott,A.R., Eskelinen,E.L.,Ridley,A.J. and Watts,C. Curr.Biol. 10: 839-848, 2000

    Wu, L., A. D’Amico, K. D. Winkel, M. Suter, D. Lo, and K. Shortman. RelB is essential for the development of myeloid-related CD8a2 dendritic cells but not of lymphoid-related CD8a+ dendritic cells. Immunity 9: 839, 1998

    Wu, L., D’Amico, A., Hochrein, H., O’Keeffe, M., Shortman, K. and Lucas, K. “Development of thymic and splenic dendritic cell populations from different hemopoietic precursors”, Blood 98: 3376–3382, 2001

    Yanagawa, Y. and Onoé K. CCR7 Ligands Induce Rapid Endocytosis in Mature Dendritic Cells with Concomitant Up-Regulation of Cdc42 and Rac Activities. Blood. 101: 4923-4929, 2003

    Yeo E., Furie BC. and Furie B. PADGEM Protein in Human Erythroleukemia Cells. Blood 73: 722-728, 1989

    Zauli G., Bassini A., Catani L., Gibellini D., Celeghini C., Borgatti P., Caramelli E., Guidotti L. and Capitani S. PMA-Induced Megakaryocytic Differentiation of HEL Cells is Accompanied by Striking Modifications of Protein Kinase C Catalytic Activity and Isoform Composition at the Nuclear Level. Br. J. Haematol. 92: 530-536, 1996

    Zhou, L.J., T.F. Tedder. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc. Natl. Acad. Sci. USA 93:2588–92, 1996

    莊惠評,“鑑別前列腺環素致效劑對於 PMA 誘導HEL 細胞分化特性影響之研究 ”,國立成功大學碩士論文,2004

    下載圖示 校內:2016-08-25公開
    校外:2016-08-25公開
    QR CODE