| 研究生: |
郭唯婕 Kuo, Wei-Chieh |
|---|---|
| 論文名稱: |
木質類廢棄物最佳焙燒條件於流化床中之微富氧燃燒 Oxygen Enrichment Combustion in Fluidized Bed with Optimal Torrefied Woody-Waste |
| 指導教授: |
李約亨
Li, Yueh-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 焙燒 、田口法 、微富氧燃燒 、流化床 |
| 外文關鍵詞: | Torrefaction, Taguchi method, oxygen enrichment combustion, fluidized bed. |
| 相關次數: | 點閱:116 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自工業革命以來,大氣中二氧化碳的濃度不斷的提高。燃燒用於熱能和發電的傳統化石燃料導致溫室氣體排放的增加。除此之外,資源稀少也是能源問題的一個問題。為了有效實現二氧化碳減排以及增加原料來源,以廢棄物部分取代煤的戰略已成為全球趨勢。
本研究的目的是研究在微富氧燃燒下的焙燒廢木顆粒在流化床中的燃燒行為。田口方法用於優化廢棄物焙燒和生物炭燃燒的操作參數。對於生質物焙燒,使用三個指標,即能量產量指數(EY),近似分析指數(PA)和進階綜合燃燒特性指數(Smix),從每個方面呈現最佳條件。焙燒溫度,停滯時間和氮氣流率是本研究中的操作參數。評估每個參數的訊噪比以獲得不同因素的影響。最佳結果用於生物炭燃燒調查。生物炭燃燒在實驗室規模的流化床反應器中進行,結合氧氣切割的技術,將氧氣注入流化床的不同區域以研究對燃燒效率的影響。生物炭燃燒優化的參數包括不同焙燒程度的生物炭、流化床溫度、氧氣入口位置和氧氣濃度。評估總流化床效率和揮發性燃燒比。根據結果,對於生質物焙燒,溫度是與其他兩個因素相比的主導因素。 EY產生較低溫度,而PA產生較高溫度。 Smix具有適中的溫度結果。對於生物炭燃燒,兩種指標的最佳結果幾乎沒有差別,這兩者都產生低床溫,高焙燒生物炭和下游注入氧氣。然而,較高的氧濃度對於揮發性燃燒比更好,而適度的氧濃度適合於總流化床效率。
The purpose of this study is to investigate the combustion behavior of torrefied waste wood pellets in the fluidized bed under oxygen enrichment combustion. Taguchi method was used to optimize the operating parameters for both biomass torrefaction and biochar combustion. For biomass torrefaction, three indexes, namely energy yield index (EY), proximate analysis-based index (PA), and effective combustion comprehensive index (Smix), were used to present the optimal conditions from each aspect. Torrefaction temperature, residence time, and N2 flow rate were the operating parameters in this study. S/N ratio of each parameter was evaluated to get the influence of different factors. The optimal results were used in the biochar combustion investigation. Biochar combustion was conducted in a lab-scale fluidized bed reactor with the idea of oxygen lancing combined. Oxygen was injected into a different zone of the fluidized bed to investigate the influence on combustion efficiency. The parameters for biochar combustion optimization included torrefied materials, fluidized bed temperature, oxygen inlet position, and oxygen concentration. Total fluidized bed efficiency and volatile combustion ratio were evaluated. According to results, for biomass torrefaction, temperature is the dominant factor comparing to the other two factors. EY yields to lower temperature, while PA yields to a higher temperature. Smix has moderate temperature results. For biochar combustion, the optimal results for both indexes have little difference, which both yields to low bed temperature, high torrefied biochar, and where oxygen is injected at the downstream. However, a higher concentration of oxygen is better for volatile combustion ratio, while moderate oxygen concentration is suitable for total fluidized bed efficiency.
[1] 交通部中央氣象局. 溫室氣體與氣候變化.
[2] Easterbrook DJ. Chapter 9 - Greenhouse Gases. In: Easterbrook DJ, editor. Evidence-Based Climate Science (Second Edition): Elsevier; 2016. p. 163-73.
[3] Lindsey R. Climate Change: Atmospheric Carbon Dioxide. Climate.gov2018.
[4] . UN. KYOTO PROTOCOL TO THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE 1998.
[5] . UN. Adoption of the Paris Agreement. 2016.
[6] Submission by Republic of China (Taiwan) Intended Nationally Determined Contribution 2015.
[7] . EYEPA. Republic of China National Greenhouse Gas Emissions Inventory Report. 2017.
[8] . BP. Statistical Review of World Energy. 2017.
[9] . IEA. Bioenergy and biofuels.
[10] Volk T, Abrahamson L, H. White E, Neuhauser E, Gray E, Demeter C, et al. DEVELOPING A WILLOW BIOMASS CROP ENTERPRISE FOR BIOENERGY AND BIOPRODUCTS IN THE UNITED STATES2000.
[11] 吳耿東, 李宏台. 再生能源:生質能源–化腐朽為能源. 2004.
[12] Kojima A, Ōtani S. Preparation of low temperature pyrolytic carbon from cis-1,2-dichloroethylene. Carbon. 1981;19:468-70.
[13] Suntivarakorn R, Treedet W, Singbua P, Teeramaetawat N. Fast pyrolysis from Napier grass for pyrolysis oil production by using circulating Fluidized Bed Reactor: Improvement of pyrolysis system and production cost. Energy Reports. 2018;4:565-75.
[14] Shen Y, Li X, Yao Z, Cui X, Wang C-H. CO2 gasification of woody biomass: Experimental study from a lab-scale reactor to a small-scale autothermal gasifier. Energy. 2019;170:497-506.
[15] Roy P, Dias G. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Reviews. 2017;77:59-69.
[16] Wang L, Barta-Rajnai E, Skreiberg Ø, Khalil R, Czégény Z, Jakab E, et al. Impact of Torrefaction on Woody Biomass Properties. Energy Procedia. 2017;105:1149-54.
[17] Bach Q-V, Tran K-Q, Khalil RA, Skreiberg Ø. Wet Torrefaction of Forest Residues. Energy Procedia. 2014;61:1196-9.
[18] Cardona S, Gallego LJ, Valencia V, Martínez E, Rios LA. Torrefaction of eucalyptus-tree residues: A new method for energy and mass balances of the process with the best torrefaction conditions. Sustainable Energy Technologies and Assessments. 2019;31:17-24.
[19] Hanoğlu A, Çay A, Yanık J. Production of biochars from textile fibres through torrefaction and their characterisation. Energy. 2019;166:664-73.
[20] Toscano G, Pizzi A, Foppa Pedretti E, Rossini G, Ciceri G, Martignon G, et al. Torrefaction of tomato industry residues. Fuel. 2015;143:89-97.
[21] Edye LA, Richards GN. Analysis of condensates from wood smoke. Components derived from polysaccharides and lignins. Environmental Science & Technology. 1991;25:1133-7.
[22] Werner K, Pommer L, Broström M. Thermal decomposition of hemicelluloses. Journal of Analytical and Applied Pyrolysis. 2014;110:130-7.
[23] Xiao L, Hu S, Song Y, Zhang L, Han H, Liu C, et al. The formation mechanism for OPAHs during the cellulose thermal conversion in inert atmosphere at different temperatures based on ESI(−) FT-ICR MS measurement and density functional theory (DFT). Fuel. 2019;239:320-9.
[24] . EY. Environmental Protection Administration Database. 2019.
[25] 再生能源發電設備設置管理辦法. 2015.
[26] . USEIA. Waste-to-Energy (Municipal Solid Waste) – Basics. 2018.
[27] . W. Taiwan Waste Incineration Plant List.
[28] Lee S-H. Waste-to-Energy Facilities in Taiwan. WTERT/Earth Engineering Center.
[29] 張育誠, 吳國光, 焦鴻文, 簡國祥, 歐陽湘. 富氧燃燒技術之應用與分析. Journal of Taiwan Energy. 2015;Volume 2:8.
[30] Liu C, Huang Y, Niu M, Pei H, Liu L, Wang Y, et al. Influences of equivalence ratio, oxygen concentration and fluidization velocity on the characteristics of oxygen-enriched gasification products from biomass in a pilot-scale fluidized bed. International Journal of Hydrogen Energy. 2018;43:14214-25.
[31] Mathekga HI, Oboirien BO, North BC. A review of oxy-fuel combustion in fluidized bed reactors. International Journal of Energy Research. 2016;40:878-902.
[32] Wang N, Liu S, Liu J. The influence of oxygen concentration on biomass gas micro gas turbine oxygen-enriched combustion. 2nd IET Renewable Power Generation Conference (RPG 2013)2013. p. 1-4.
[33] Wall T, Liu Y, Spero C, Elliott L, Khare S, Rathnam R, et al. An overview on oxyfuel coal combustion—State of the art research and technology development. Chemical Engineering Research and Design. 2009;87:1003-16.
[34] Duan L, Zhao C, Zhou W, Qu C, Chen X. O2/CO2 coal combustion characteristics in a 50kWth circulating fluidized bed. International Journal of Greenhouse Gas Control. 2011;5:770-6.
[35] Luo SY, Xiao B, Hu ZQ, Liu SM, Guan YW. Experimental study on oxygen-enriched combustion of biomass micro fuel. Energy. 2009;34:1880-4.
[36] Kayahan U, Özdoğan S. Oxygen enriched combustion and co-combustion of lignites and biomass in a 30 kWth circulating fluidized bed. Energy. 2016;116:317-28.
[37] Liu L, Huang Y, Cao J, Liu C, Dong L, Xu L, et al. Experimental study of biomass gasification with oxygen-enriched air in fluidized bed gasifier. Science of The Total Environment. 2018;626:423-33.
[38] Thornock J, Tovar D, Tree DR, Xue Y, Tsiava R. Radiative intensity, no emissions, and burnout for oxygen enriched biomass combustion. Proceedings of the Combustion Institute. 2015;35:2777-84.
[39] N. CORNA GB. THE USE OF OXYGEN IN BIOMASS AND WASTE-TO-ENERGY PLANTS: A FLEXIBLE AND EFFECTIVE TOOL FOR EMISSION AND PROCESS CONTROL. Third International Symposium on Energy from Biomass and Waste. 2010;Venice, 2010.
[40] Biomass combustion manual. 2015.
[41] Prieto Jiménez N, Fabio O, Silva G. Fluid Dynamics of Gas - Solid Fluidized Beds. 2012.
[42] Villanueva-Chávez JG, Bizzo WA. Fluid dynamic modeling of a large bubbling fluidized bed for biomass combustion: Mass transfer in bubbles. Chemical Engineering Science. 2019;196:414-24.
[43] Karim MR, Naser J. Numerical Modelling of Solid Biomass Combustion: Difficulties in Initiating the Fixed Bed Combustion. Energy Procedia. 2017;110:390-5.
[44] Fu Z, Zhu J, Barghi S, Zhao Y, Luo Z, Duan C. Minimum fluidization velocity growth due to bed inventory increase in an Air Dense Medium Fluidized Bed. Chemical Engineering Journal. 2019;359:1372-8.
[45] Lan W, Chen G, Zhu X, Wang X, Wang X, Xu B. Research on the characteristics of biomass gasification in a fluidized bed. Journal of the Energy Institute. 2018.
[46] Scala F, Chirone R, Meloni P, Carcangiu G, Manca M, Mulas G, et al. Fluidized bed desulfurization using lime obtained after slow calcination of limestone particles. Fuel. 2013;114:99-105.
[47] Li P-W, Chyang C-S. A comprehensive study on NOx emission and fuel nitrogen conversion of solid biomass in bubbling fluidized beds under staged combustion. Journal of the Energy Institute. 2019.
[48] Pang L, Shao Y, Zhong W, Liu H. Experimental investigation on the coal combustion in a pressurized fluidized bed. Energy. 2018;165:1119-28.
[49] Mladenović M, Paprika M, Marinković A. Denitrification techniques for biomass combustion. Renewable and Sustainable Energy Reviews. 2018;82:3350-64.
[50] Committee EYA.
[51] Coats AW, Redfern JP. Thermogravimetric analysis. A review. Analyst. 1963;88:906-24.
[52] Zeng H, Yao B, Qiu J, Yu Q. Study on the combustion characteristics and slagging characteristics of blended coal mixed from anthracite and bitumite1996.
[53] Jian-yuan C, Xue-xing S. DETERMINATION OF THE DEVOLATILIZATION INDEX AND COMBUSTION CHARACTERISTIC INDEX OF PULVERIZED COALS1987.
[54] Morgan PA, Robertson SD, Unsworth JF. Combustion studies by thermogravimetric analysis: 1. Coal oxidation. Fuel. 1986;65:1546-51.
[55] Lu J-J, Chen W-H. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Applied Energy. 2015;160:49-57.
[56] Sun R, Ismail TM, Ren X, Abd El-Salam M. Effect of ash content on the combustion process of simulated MSW in the fixed bed. Waste Management. 2016;48:236-49.
[57] Karna DS, D Ph K, P Scholar A. An Overview on Taguchi Method2019.
[58] Basu P. Chapter 10 - Biomass Cofiring and Torrefaction. In: Basu P, editor. Biomass Gasification, Pyrolysis and Torrefaction (Second Edition). Boston: Academic Press; 2013. p. 353-73.
[59] Wang A, Marashdeh Q, Teixeira FL, Fan LS. 20 - Applications of capacitance tomography in gas–solid fluidized bed systems. In: Wang M, editor. Industrial Tomography: Woodhead Publishing; 2015. p. 529-49.
[60] Mazumder B. 6 - Coal conversion processes. In: Mazumder B, editor. Coal Science and Engineering: Woodhead Publishing India; 2012. p. 145-451.
[61] Chapter 5 - Fluidized-bed combustion. In: Dryden IGC, editor. The Efficient Use of Energy (Second Edition): Butterworth-Heinemann; 1982. p. 58-63.
[62] Wu K-K, Chang Y-C, Chen C-H, Chen Y-D. High-efficiency combustion of natural gas with 21–30% oxygen-enriched air. Fuel. 2010;89:2455-62.
[63] Zheng L. 1 - Overview of oxy-fuel combustion technology for carbon dioxide (CO2) capture. In: Zheng L, editor. Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture: Woodhead Publishing; 2011. p. 1-13.