簡易檢索 / 詳目顯示

研究生: 徐宇鋒
Choi, U-Fong
論文名稱: 具不確定性分散式發電之智慧電網下的需求端管理: 以二階段穩健最佳化方法求解
Demand Side Management for Smart Grids with Distributed Uncertain Generation Using Two-Stage Robust Optimization
指導教授: 劉任修
Liu, Ren-Shiou
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 52
中文關鍵詞: 需求端管理即時計價穩健最佳化智慧電網
外文關鍵詞: Demand Side Management, Real-time pricing, Robust Optimization, Smart Grids
相關次數: 點閱:204下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討在即時電價下的電力成本最小化問題。與過去的研究不同,在本研究的問題中所有工作皆為不可中斷。另外,未來的智慧電網是有能力整合分散式電力資源以及電力儲存設備到電力系統中,因此本研究假設所有使用者都裝配太陽能發電板以及電池。使用者可以向電網購買電力去滿足他們的電力需求,除此之外,他們可以使用太陽能發電電量以及電池電力,或在尖峰用電時段把多餘的電力賣給電網以降低使用者自身的電費。由於太陽能的不確定性所引起的困難,傳統的最佳化方法不能夠有效產出電力成本最少化問題的可靠的答案。
    本研究改為使用穩健最佳化方法進行求解,將問題建構成一個二階段穩健最佳化的模型並使用限制式及變數產生演算法(column-and-constraint generation algorithm) 求解。本研究另外提出一套名為穩健需求端管理演算法(robust demand side management algorithm)。新的演算法由兩部份組成:第一部分為用於產生所有使用者的用電電器排程;第二部分為基於動態規劃的演算發,用於決定如何使用太陽能發電板及電池。根據實驗結果顯示,新演算法的收斂速度較限制式及變數產生演算法快。藉由新演算法可以有效解決具有不確定再生能源的工作排程問題,最小化每一個使用者的用電成本及降低電力系統的peak-to-average ratio (PAR)。

    In this thesis, we investigate the problem of energy cost minimization under the real-time pricing model. The jobs in our problem are non-interruptible, which is different from those examined in prior studies. Moreover, the future smart grid is capable of integrating distributed energy resources and storage equipment into the energy system. We assume that each user is equipped with a photovoltaic panel and a battery. Users can purchase energy from the grid to fulfill their energy demands. Moreover, they can use the renewable energy produced from the photovoltaic panel and the energy drawn from the battery or sell it back to the grid during peak hours in order to lower their electricity bills. Because of the difficulty caused by intermittent renewable energy sources, conventional optimization techniques cannot produce a reliable solution to the energy cost minimization problem. We use a robust optimization approach to solve the problem, and the problem is formulated as a two-stage robust optimization model. We apply a column-and-constraint generation (C&CG) algorithm to obtain the solution to the problem. We also propose a new algorithm called the robust demand side management (RDSM) algorithm. The new algorithm consists of two portions: The first portion is a heuristic-based algorithm and is used to produce the appliance schedules for all users. The second portion is based on dynamic programming and is used to utilize the photovoltaic panel and the battery. According to the simulation results, the proposed new algorithm can produce a solution with faster convergence as compared with the C&CG algorithm. It can effectively handle the scheduling problem with uncertain renewable energy, minimize the energy cost for each user and lower the peak-to-average ratio (PAR) of the energy system.

    Table of Contents Chinese Abstract i Abstract ii Acknowledgements iii List of Figures v List of Tables vi Chapter 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Research Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter 2 Related Works 6 2.1 Demand Side Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Energy Trading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Renewable Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Robust Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 3 Research Methodology 13 3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Dynamic Programming for Battery Management . . . . . . . . . . . . . . . 21 3.4 Demand Side Management Algorithm . . . . . . . . . . . . . . . . . . . . . 25 3.5 Robust Demand Side Management . . . . . . . . . . . . . . . . . . . . . . . 26 Chapter 4 Experiment 34 4.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2 Algorithm Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Chapter 5 Conclusion and Future Work 48 References 50

    Andreas, A.,and Stoffel, T. (1981). NREL Solar Radiation Research Laboratory (SRRL):
    Baseline Measurement System (BMS); Golden, Colorado (Data); NREL Report No. DA-
    5500-56488. http://dx.doi.org/10.5439/1052221
    Bertsimas, D., Brown, D. B., and Caramanis, C. (2011). Theory and applications of robust
    optimization. SIAM Review, 53(3):464–501.
    Chang, T. H., Alizadeh, M., and Scaglione, A. (2013). Real-time power balancing via
    decentralized coordinated home energy scheduling. IEEE Transactions on Smart Grid,
    4(3):1490–1504.
    Danandeh, A., Zhao, L., and Zeng, B. (2014). Job scheduling with uncertain local generation
    in smart buildings: Two-stage robust approach. IEEE Transactions on Smart Grid,
    5(5):2273–2282.
    European technology platform for the electricity networks of the future. (2013). Retrieved
    from http://www.smartgrids.eu/
    Farhangi, H. (2010). The path of the smart grid. IEEE Power and Energy Magazine,
    8(1):18– 28.
    Fuselli, D., Angelis, F. D., Boaro, M., Squartini, S., Wei, Q., Liu, D. and Piazza, F. (2013).
    Action dependent heuristic dynamic programming for home energy resource scheduling.
    International Journal of Electrical Power Energy Systems, 48, 148-160.
    Gholian, A., Mohsenian-Rad, H., Hua, Y., Qin, J. (2013, July 21-25). Optimal
    industrial load control in smart grid: A case study for oil refineries. Paper
    presented at 2013 IEEE Power Energy Society General Meeting, Vancouver, BC.
    doi:10.1109/pesmg.2013.6672710
    Goel, N., Agarwal, M. (2015, March 16-18). Smart grid networks: A state of the art
    review. 2015 International Conference on Signal Processing and Communication (ICSC),
    Noida. doi:10.1109/icspcom.2015.7150632
    Gorissen, B. L., Yanıko˘glu, ˙I., den Hertog, D. (2015). A practical guide to robust optimization.
    Omega, 53, 124-137.
    Gurobi Optimization, I. (2015). Gurobi optimizer reference manual. Retrieved from
    https://www.gurobi.com
    Jiang, L., Low, S. (2011, September 28-30). Real-time demand response with uncertain
    renewable energy in smart grid. Paper presented at 2011 49th Annual Allerton
    Conference on Communication, Control, and Computing (Allerton), Monticello, IL.
    doi:10.1109/allerton.2011.6120322
    Kim, B. G., Ren, S., van der Schaar, M., and Lee, J.W. (2013). Bidirectional energy trading
    and residential load scheduling with electric vehicles in the smart grid. IEEE Journal on
    Selected Areas in Communications, 31(7):1219–1234.
    Liu, Y., Yuen, C., Huang, S., Hassan, N. U., Wang, X., and Xie, S. (2014). Peak-to- average
    ratio constrained demand-side management with consumer’s preference in resi- dential
    smart grid. IEEE Journal of Selected Topics in Signal Processing, 8(6):1084–1097.
    Logenthiran, T., Srinivasan, D., and Shun, T. Z. (2012). Demand side management in smart
    grid using heuristic optimization. IEEE Transactions on Smart Grid, 3(3):1244–1252.
    Palensky, P. and Dietrich, D. (2011). Demand side management: Demand response, intelligent
    energy systems, and smart loads. IEEE Transactions on Industrial Informatics,
    7(3):381–388.
    Stephens, E., Smith, D., and Mahanti, A. (2015). Game theoretic model predictive control
    for distributed energy demand-side management. IEEE Transactions on Smart Grid,
    6(3):1394–1402.
    Wang, C., Zhou, Y., Jiao, B., Wang, Y., Liu, W., and Wang, D. (2015). Robust optimization
    for load scheduling of a smart home with photovoltaic system. Energy Conversion and
    Management, 102:247–257.
    Wang, Y., Saad, W., Han, Z., Poor, H. V., and Bas¸ar, T. (2014). A game-theoretic approach
    to energy trading in the smart grid. IEEE Transactions on Smart Grid, 5(3):1439–1450.
    What is the Smart Grid ? (n.d.). Retrieved from https://www.smartgrid.gov/the
    smart grid/
    Wu, Y., Tan, X., Qian, L., Tsang, D. H. K., Song, W. Z., and Yu, L. (2015). Optimal
    pricing and energy scheduling for hybrid energy trading market in future smart grid. IEEE
    Transactions on Industrial Informatics, 11(6):1585–1596.
    Zeng, B. and Zhao, L. (2013). Solving two-stage robust optimization problems using a
    column-and-constraint generation method. Operations Research Letters, 41(5):457 – 461.

    無法下載圖示 校內:2021-08-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE