| 研究生: |
陳柏維 Chen, Po-Wei |
|---|---|
| 論文名稱: |
Laplace Adomian 混合分解法應用於邊界層流流經楔型板之研究 Applications of the Hybrid Laplace Adomian Decomposition Method to Falkner-Skan wedge flow |
| 指導教授: |
賴新一
Lai, Xin-Yi 陳朝光 Chen, Chao-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | Adomian分解法 、Padé近似法 、Falkner Skan方程式 |
| 外文關鍵詞: | Adomian decomposition method, Padé approximant, Falkner-Skan equation |
| 相關次數: | 點閱:61 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文是利用LADM (Laplace Adomian Decomposition Method)結合Padé近似法來分析Falkner-Skan在二維層流的速度分布,進一步的改變楔型板的角度探討各角度的速度圖與文獻比對,另外也利用此方法分析溫度場與Falkner-Skan邊界層問題,改變Pr (Prandtl numbers)以及楔型板角度的溫度圖與文獻作比較。
Laplace Adomian分解法是由George Adomian教授提出的ADM法與Laplace轉換結合而成,而Laplace Adomian分解法的近似解為一個無窮多項的級數解,必須將方程式取至無窮多項否則不論求取多少分項仍屬於一片段級數解,此問題會導致發散無法收斂,然而結合Padé近似法可以修正此問題使解更為精準,此方法可以不用把邊界值問題轉換為初始值問題,使其解更為簡單快速。本文使用的Laplace Adomian結合Padé近似混合法針對不同角度楔型板的流體速度分布,以及不同角度與Pr數的溫度分布所計算的結果,與文獻中不同方法的數值解作比較,結果相當準確,由此可得知Laplace Adomian結合Padé近似混合法是準確且快速的方法。
The Laplace Adomian decomposition method is employed in the solution of the two dimensional laminar boundary layer of Falkner-Skan equation for wedge. And use this paper method to investigate the temperature field associated with the Falkner-Skan boundary equation.
The Laplace Adomian decomposition method combines the numerical Laplace transform algorithm and the Admoian decomposition method. The truncated series solution solved by the LADM diverges rapidly as the applicable domain increases. However, the Padé approximant extends the domain of the truncated series solution to obtain better accuracy and convergence. In this paper, a hybrid method of the LADM combined with the Padé approximant, named the hybrid Laplace Adomian decomposition method is proposed to solve the Falkner-Skan equation to demonstrate efficient and reliable results.
The LADM-Padé approximant solutions demonstrate efficient and reliable results and have been shown a good accuracy and convergence in comparison with the exact solutions and other numerical method solutions.
1.Adomian, G., 1994, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Academic Publishers, Boston.
2.Adomian, G., 1995, “Delayed nonlinear dynamical systems,” Mathematical and Computer Modelling, Vol. 22, No. 3, pp. 77-79.
3.Adomian, G., 1996, “Nonlinear Klein-Gordon equation,” Applied Mathematics Letters, Vol. 9, No. 3, pp. 9-10.
4.Adomian, G., 1996, “Solution of the coupled nonlinear partial differential equations by decomposition,” Computers & Mathematics with Applications, Vol. 31, No. 6, pp. 117-120.
5.Adomian, G., 1996, “The fifth-order Korteweg-de Vries equation,” International Journal of Mathematics and Mathematical Sciences, Vol. 19, No. 2, p. 415.
6.Adomian, G., 1998, “Solutions of nonlinear P.D.E.,” Applied Mathematics Letters, Vol. 11, No. 3, pp. 121-123.
7.Adomian, G., 1998, “Nonlinear dissipative wave equation,” Applied Mathematics Letters, Vol. 11, No. 3, pp. 125-126.
8.Allan FM, Syam MI.“On the analytic solutions of the nonhomogeneous Blasius problem”. J Comput Appl Math 2005;182:362–71.
9.Asai Asaithambi. “A finite-difference method for the falkner-Skan equation”.Applied Mathematics and Computation 92(1998)135-141.
10.Baker, Jr., G.A. and Graves-Morris, P., 1996, PADÉ APPROXIMANTS,Cambridge University Press, 2nd edition, New York.
11.Baoheng Yao.“Series solution of the temperature distribution in the Falkner–Skan wedge flow by the homotopy analysis method’’. European Journal of Mechanics B/Fluids 28 (2009) 689–693.
12.Bejan, A., 2004, Convection heat transfer, John Wiley & Sons, NewJersey.
13.B.-L. Kuo.“Application of the differential transformation method to the solutions of Falkner-Skan wedge flow”.Acta Mechanica 164, 161–174 (2003).
14.B.-L. Kuo.“Heat transfer analysis for the Falkner–Skan wedge flow by the differential transformation method”.International Journal of Heat and Mass Transfer 48 (2005) 5036–5046.
15.Chiu, C.H. and Chen, C.K., 2002, “A decomposition method for solving the convective longitudinal fins with variable thermal conductivity”, International of Heat and Mass Transfer, Vol. 45, pp. 2067-2075.
16.Chen, W. and Lu, Z., 2004, “An algorithm for Adomiandecomposition method,” Applied Mathematics and Computation, Vol. 159, pp. 221-235.
17.Ebrahim Alizadeh,Mousa Farhadi,Kurosh Sedighi,H.R. Ebrahimi-Kebria and Akbar Ghafourian, 2006,“Solution of the Falkner–Skan equation for wedge by Adomian Decomposition Method”Communications in Nonlinear Science and Numerical Simulation 14 (2009) 724–733
18.El-Tawil, M.A., Bahnasawi, A.A., and Abdel-Naby, A., 2004, “Solving Riccati differential equation using Adomian’s decomposition method,” Applied Mathematics and Computation, Vol. 157, pp. 503-514.
19.Falkner, V. M., Skan, S. W.: Some approximate solutions of the boundary-layer equations. Phil. Mag. 12, 865–896 (1931).
20.He, J.H., 1998, “Approximate analytical solution of Blasius’ equation” Communications in Nonlinear Science & Numerical Simulation, Vol. 3, pp. 260-363.
21.He, J.H., 2003, “A simple perturbation approach to Blasius equation,” Applied Mathematics and Computation, Vol. 140, pp. 217-222.
22.Khuri, S.A., 2001, “On the decomposition method for approximate solution of nonlinear ordinary differential equation,” International Journal of Mathematical Education in Science and Technology, Vol. 32, No. 4, pp. 525-539.
23.Pa-Yee Tsai and Cha’o-KuangChen.“An approximate analytic solution of the nonlinear Riccati differential equation”.Journal of the Franklin Institute 347(2010)1850–1862
24.Rajagopal, K. R., Gupta, A. S., Na, T. Y.: A note on the Falkner-Skan flows of a non-Newtonian fluid. Int. J. Non-Linear Mech. 18, 313–320 (1983).
25.Tien, W.C. and Chen, C.K., 2009, “Adomian decomposition method by Legendre polynomials, Chaos, Solitons and Fractals, Vol. 39, pp. 2093-2101.
26.Wazwaz, A.M. and El-sayed, S.M., 2001, “A new modification of the Adomian decomposition method for linear and nonlinear operators, Applied Mathematics and Computation, Vol. 122, pp. 393-405.
27.Wazwaz, A.M., 2000, “A new algorithm for calculating Adomian polynomials for nonlinear operators, Applied Mathematics and Computation, Vol. 111, pp.53-69.
28.Wazwaz, A.M., 2001, “A reliable algorithm for solving boundary layer problems for higher-order integro-differential equations, Applied Mathematics and Computation, Vol. 118, pp. 327-342.
29.Wazwaz, A.M. and Gorguis, A., 2004, “An analytic study of Fisher’sequation by using Adomian decomposition method,” Applied Mathematics and Computation, Vol. 154, pp. 609-620.
30.Wazwaz, A.M., 2006, “Padé approximants and Adomian decomposition method for solving the Flierl–Petviashivili equation and its variants,” Applied Mathematics and Computation, Vol. 182, pp. 1812-1818. 31.
31.White, F.M.: Viscous fluid flow, 2nd ed. New York: McGraw-Hill 1991.