| 研究生: |
王冠翔 Wang, Kuan-hsiang |
|---|---|
| 論文名稱: |
扭轉變形機制下複合桿件的非完美界面的理論探討 Theoretical derivations of mathematical framework of imperfect interfaces of composite shafts under Saint-Venant’s torsion |
| 指導教授: |
陳東陽
chen, Tungyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 非完美界面 、複合桿件 、泰勒展開式 |
| 外文關鍵詞: | composite bars, imperfect interfaces, Taylor expansions |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在一個複合桿件上,基材和內含物之間有一個厚度為t的薄層界面,本論文的目的是推導這個複合桿件在受到扭轉的作用之下時,可以用一個界面來模擬這個薄層界面,而這個界面它會與基材、內含物和夾層的性質與厚度有關。本文藉由這個界面模型來探討非完美界面的情況,有別於位移和剪力皆連續的完美界面,非完美界面主要分成兩種型式:一種是剪力連續而翹曲位移不連續,另一種是翹取位移連續而剪力卻不連續。然後接下來將把所推導出的關係式將其精確度從交界面厚度 的一階擴展至多階,最後討論的焦點從等向性材料擴展到非等向性材料,並以正向性複合圓柱為例推導其界面關係式與討論其不完美的界面情況。
A thin curved interphase of thickness t between two media is considered on the torsion problem of composite shafts. The interphase is modeled by a surface between the two neighboring media, and appropriate interface conditions on it are derived for the warping function and shear traction fields. The derivation makes use Taylor expansions for the fields and is correct to O(tN), where t denotes the thickness of the interphase. The purpose of this thesis is discuss the imperfect interfaces. Two kinds of imperfect interfaces are considered: one which models a thin interphase of low shear modulus and the other models a thin interphase of high shear modulus. In the former case, the traction on the interface is continuous but the axial warping displacement undergoes a discontinuity. In the latter case, the warping displacement at the interface is continuous but the axial shear traction undergoes a discontinuity.
Bovik, P. 1994 On the modelling of thin interface layers in elastic and acoustic scattering problems. The Quarterly Journal of Mechanics and Applied Mathematics. 47, 17-42.
Bovik, P. 1996 A comparison between the Tiersten model and O(H) boundary conditions for elastic surface waves guided by thin layers. Journal of Applied Mechanics. 63, 162-167
Bovik, P. & Olsson, P. 1992 Effective boundary conditions for the scattering of two-dimensional SH waves from a curved thin elastic layer. Proceedings of the Royal Society A. 439, 257-269.
Benveniste, Y. 1999 On the decay of end effects in conduction phenomena: a sandwich strip with imperfect interfaces of low or high conductivity. Journal of Applied Physics. 86, 1273-1279.
Benveniste, Y. & Miloh, T. 1999 Neutral inhomogeneities in conduction phenomena. Journal of the Mechanics and Physics of Solids. 47, 1873-1892.
Benveniste, Y. 2006a A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. Journal of the Mechanics and Physics of Solids. 54, pp. 708-734.
Benveniste, Y. 2006b An O(hN) interface model of a three-dimensional curved interphase in conduction phenomena. Proceedings of the Royal Society A. 462, pp. 1593-1617.
Benveniste, Y. and Baum, G. 2007 An interface model of a graded three dimensional anisotropic curved interphase. Proceedings of the Royal Society A. 463, pp. 419-434.
Benveniste, Y. and Chen, T. 2001 On the Saint-Venant torsion of composite bars with imperfect interfaces. Proceedings of the Royal Society of London. Series A. 457, pp. 231-255.
Chen, T. and Wei, C. J. 2005 Saint-Venant torsion of anisotropic shafts: theoretical frameworks, extremal bounds and affine transformations. The Quarterly Journal of Mechanics and Applied Mathematics. 58(2), pp. 269-287.
Hashin, Z. 1991 The spherical inclusion with imperfect interface. Journal of Applied Mechanics. 58, 444-449.
Hashin, Z. 2001 Thin interphase/imperfect interface in conduction. Journal of Applied Physics. 89, 2261-2267.
Hashin, Z. 2002 Thin interphase/imperfect interface in elasticity with application to coated fiber composites. Journal of the Mechanics and Physics of Solids. 50, 2509-2537.
Lipton, R. 1998 Optimal configurations for maximum torsional rigidity. Archive for Rational Mechanics and Analysis. 144, pp. 79-106.
Muskhelishvili, N.I., Some basic problems of the mathematical theory of elasticity, Noordhoff, Groningen, 1953.
Pham Huy, H. & Sanchez-Palenica, E. 1974 Phenomenes de transmission a travers des couches minces de conductivite elevee. Journal of Mathematical Analysis and Applications. 47, 284-309.
Sanchez-Palenica, E. 1970 Comportement limite d’un probleme de transmission a travers une plaque faiblement conductrice. Comptes Rendus de l Académie des Sciences. Paris A270, 1026-1028
Sokolnikoff, I.S., Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956.
Timoshenoko, S.P. & Gooder, J.N., Theory of Elasticity, McGraw-Hill, New York, 1970.
Ting, T. C. T. 2007 Mechanics of a thin anisotropic elastic layer and a layer that is bonded to an anisotropic elastic body or bodies. Proceedings of the Royal Society A. published online.
Niklasson, A. J., Datta, S. K. & Dunn, M. L. 2000a On approximating guided waves in plates with thin anisotropic coatings by means of effective boundary conditions. Journal of the Acoustical Society of America. 108, 924-933.
Niklasson, A. J., Datta, S. K. & Dunn, M. L. 2000b On ultrasonic guided waves in a thin anisotropic layer lying between two isotropic layers. Journal of the Acoustical Society of America. 108, 2005-2011.