簡易檢索 / 詳目顯示

研究生: 楊叢原
Yang, Tsung-Yuan
論文名稱: 氧化釩熱阻型微感測器之特性研究
Investigated the Performance of VOx Microbolometers
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 75
中文關鍵詞: 懸浮式熱敏阻型感測器響應度電阻溫度係數熱時間常數氧化釩薄膜
外文關鍵詞: Floating-type microbolometer, responsivity, temperature coefficient of the resistance, Thermal time constant, VOx thin films
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為氧化釩懸浮式熱敏電阻式微感測器的特性研究,使用磁控式射頻濺鍍系統以不同製程條件製備氧化釩薄膜作為懸浮式熱敏電阻式微感測器的感測層,並為了改善熱由矽基板散逸的問題,因此以體型微加工蝕刻技術蝕刻矽基板,用以製作高性能之懸浮式微感測器感測器元件。
    以射頻磁控式濺鍍系統沉積氧化釩薄膜,其中探討以不同的製程條件如氬氣與氧氣流量比、射頻功率及腔體壓力對氧化釩薄膜之特性影響,並對薄膜進行不同的溫度及環境下熱處理,利用可變溫之四點探針量測其片電阻並計算電阻溫度係數(Temperature coefficient of resistivity, TCR),並以原子力顯微鏡(AFM)觀察薄膜表面結構,藉由X光繞射分析儀(XRD)分析薄膜的結晶相與結晶品質,提出氧化釩薄膜於氧氣中400oC熱處理10分鐘可以獲得最大的電阻溫度係數值為2.36 %K-1,且室溫電阻率為8.25 -cm,作為我們後續應用在懸浮式熱敏電阻式微感測器之感測膜。在體型微加工蝕刻部份我們以氫氧化四甲基銨(Tetramethylammonium Hydroxide, TMAH)蝕刻(100)P型矽晶圓,其中探討以不同的蝕刻條件如濃度、溫度及蝕刻時間對矽晶圓影響。最後完成氧化釩懸浮式熱敏電阻式微感測器製作,量測微感測器的電阻溫度係數為-2.36 %K-1,且通入定電流0.03 μA時可得到元件在常壓下熱時間常數、響應度及熱導分別為38.8 ms、635 KV/W及2.07 × 10−8 W/K。

    In this thesis, the performance of the vanadium oxide (VOx) floating-type microbolometers was investigated. The VOx thin films were deposited using magnetron radio frequency (RF) sputtering system with various deposition conditions as the sensing layer of the microbolometers. To solve the question of the thermal loss from the Si substrates and improve the performance of the VOx floating-type microbolometers, the bulk micromachining technique was utilized to etch the Si substrate.
    The performances of the VOx films deposited using magnetron RF sputtering system at various deposition conditions were analyzed. The relationship between the performance and the deposition conditions, such as various gas flow ratio of Ar and O2, RF powers, and chamber pressure was investigated. such as. The thermal treatments with various temperatures and ambiences were also utilized to improve the performance of the VOx films. The sheet resistance of the VOx films was carried out using the four point probe, which could estimate the temperature coefficient of resistivity (TCR). The atomic force microscope (AFM) and X-ray diffraction (XRD) were used to measure the morphology and the crystallization of the VOx films, respectively. The maximum TCR of 2.36 %K-1 and the resistivity of 8.25 -cm at room temperature for the VOx films with thermal annealed at 400 ˚C in O2 ambience for 10 min were obtained. The resulted VOx films were applied in the microbolometers as the sensing layer.
    In the bulk micromachining etching process, the tetramethylammonium hydroxide (TMAH) solutions were utilized to etch the (100) p-type Si substrate, which form the floating structure on the Si substrate. Otherwise, the relationship between the performance and the etching conditions, such as various concentrations of TMAH, etching temperature, and etching time was also investigated.
    Finally, the resulted VOx films and the optimize etching condition were applied in the fabricating of the floating-type microbolometers. The TCR of the floating-type microbolometers was -2.36 %K-1. At fixed injection current of 0.03 μA, the thermal time constant 、responsivity and thermal conductivity of the resulted VOx floating-type microbolometers were 38.8ms、635 KV/W and 2.07 × 10−8 W/K, respectively.

    目錄 摘要 I Abstract III 誌謝 VI 表目錄 XI 圖目錄 XII 第一章 序論 1 1.1 前言 1 1.2 動機與目的 2 第二章 實驗原理簡介 3 2.1 紅外線感測器之原理及類型 3 2.1.1 紅外線感測器簡介 3 2.1.2 熱阻型紅外線感測器之感測機制 4 2.1.2.1 電阻溫度係數 4 2.1.2.2 熱導 5 2.1.2.3 熱時間常數 5 2.1.2.4 響應度 6 2.1.3 熱阻型紅外線感測器之感測層材料與製程介紹8 2.1.4 氧化釩薄膜特性與製備技術 10 2.2 蝕刻技術簡介 11 2.2.1 濕式蝕刻技術 11 2.2.2 等向性與非等向性蝕刻 12 2.2.3 蝕刻選擇比 12 2.2.4 二氧化矽的濕式蝕刻 13 2.2.5 矽的濕式蝕刻 13 2.3 量測儀器 14 2.3.1 表面高度量測儀 14 2.3.2 四點探針 15 2.3.3 低掠角薄膜繞射儀 16 2.3.4 原子力顯微鏡 16 2.3.5 場發射型掃描式電子顯微鏡17 2.4 元件量測系統 18 2.4.1 頻率響應 18 2.4.2 溫度響應 19 第三章 實驗規劃與元件製程 29 3.1 氧化釩薄膜製程 29 3.1.1 試片清潔 29 3.1.2 氧化釩薄膜沉積 29 3.2 體型微加工製程 30 3.2.1 試片清潔 30 3.2.2 定義與成長保護層與支撐層 31 3.3 元件光罩設計與製程流程 32 3.3.1 元件光罩設計 32 3.3.2 元件製程流程 33 第四章 實驗量測與結果討論 40 4.1 製作紅外線感測薄膜之氧化釩 40 4.1.1 不同退火溫度對氧化釩薄膜之特性影響 40 4.1.2 不同射頻功率對氧化釩薄膜之特性影響 42 4.1.3 不同氬氣與氧氣流量比對於氧化釩薄膜的影響45 4.1.4 不同腔體壓力對氧化釩薄膜之特性影響 47 4.2 體型微加工蝕刻測試 49 4.2.1 不同的蝕刻液之溫度對微結構影響 49 4.2.2 不同的蝕刻時間對微結構影響 50 4.2.3 不同的蝕刻液之濃度對微結構影響 51 4.3 熱阻型感測元件特性量測 52 4.3.1 頻率響應分析 52 4.3.2 溫度響應分析 53 4.3.3 響應度分析 53 4.3.4 熱導分析 54 第五章 結論與未來展望 70 5.1 結論 70 5.2 未來展望 71 參考文獻 72

    [1]A. Rogalski, “Recent progress in infrared detector technologies,” IR. Phys. & Tech., 54, 136 (2011).
    [2]X. M. Liu, H. J. Fang, and L. T. Liu, “Study on new structure uncooled a-Si microbolometer for infrared detection,” Microelectron. J., 38, 735 (2007).
    [3]L. N. Son, T. Tachiki, and T. Uchida, “Characteristics of vanadium oxide thin films prepared by metal–organic decomposition for bolometer detectors,” Jap. J. Appl. Phys., 50, 025803 (2011).
    [4]J. Li and N. Yuan, “Temperature sensitivity of resistance of VO2 polycrystalline films formed by modified ion beam enhanced deposition,” Appl. Surf. Sci., 233, 252 (2004).
    [5]V. K. Jain and C. R. Jalwania, “Development of IR sensor using MEMS technology,” ISSS-SPIE, 190 (1999).
    [6]Q. Cheng, “Design of dual-band uncooled infrared microbolometer,” IEEE Sens. J., 11, 167 (2011).
    [7]S. P. Langley, “The bolometer and radiant energy,” Proc. Am. Acad., 16, 342 (1881).
    [8]H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Yong, W. Lee, and S. G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Electron Devices, 46, 1489 (1999).
    [9]X. M. Liu, H. J. Fang, and L. T. Liu, “Study on new structure uncooled a-Si microbolometer for infrared detection,” Microelectron. J., 38, 735 (2007).
    [10]Q. Cheng, “Design of dual-band uncooled infrared microbolometer,” IEEE Sens. J., 11, 167 (2011).
    [11]K. C. Liddiard, “Thin-film resistance bolometer IR detectors,” Infrared Phys., 24, 57 (1984).
    [12]H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Yong, W. Lee, and S. G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Electron Devices, 46, 1489 (1999).
    [13]R. A. Wood, “Use of vanadium oxide in mircobolometer sensors,” United States Patent No. 5450053 (1995).
    [14]H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphous silicon suboxide layer,” Sol. Energy Mater. Sol. Cells, 92, 1279 (2008).
    [15]T. Mori, K. Kawano, “Oxide thin film for bolometer and infrared detector using the oxide thin film,” United States Patent No.6489613 (2002).
    [16]W. G. Baer, T. Hull, K. D. Wise, K. Najafi, and K. D. Wise, “A multiplexed silicon infrared thermal imager,” Proc. of Transducers, 91, 631 (1991).
    [17]翁炳國,「矽之微細加工技術及應用」,國立交通大學光電工程研究所博士論文,(1992)。
    [18]H. B. Morris, “Method of operating a high responsivity thermochromic infrared detector,” United States Patent No. 6121618 (2000).
    [19]陳柏穎,「矽晶圓非等向性濕式蝕刻特性研究」,國立中山大學機械與機電工程研究所碩士論文,(2003)。
    [20]H. Katzke, P. Tolédano, and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Review B, 68, 024109 (2003).
    [21]陳冠中,「二氧化釩粉末之製備及其性質研究」,國立成功大學材料科學及工程系碩士論文,(1996)。
    [22]Gurvitch, S. Luryi, A. Y. Polyakov, A. Shabalov, “Bolometric sensor with high tcr and tunable low resistivity,” United States Patent No.0248167 (2011).
    [23]Subrahmanyam, Y. Bharat Kumar Reddy, and C. L. Nagendra, “Nano-vanadium oxide thin films in mixed phase for microbolometer applications,” J. Appl. Phys., 41, 195108 (2008).
    [24]N. S. Le, T. Tachiki, and T. Uchida, “Characteristics of vanadium oxide thin films prepared by metal–organic decomposition for bolometer detectors,” Jpn. J. Appl. P., 50 , 025803 (2011).
    [25]李卓翰,「二氧化釩薄膜之製備及其性質研究」,國立成功大學材料科學及工程系碩士論文,(1996)。
    [26]M. Gurvitch, S. Luryi, A. Polyakov, and A. Shabalov, “Nonhysteretic phenomena in the metal–semiconductor phase-transition loop of VO2 films for bolometric sensor applications,” IEEE Trans. Nanotechnol., 9, 647 (2010).
    [27]D. H. Youn, J. W. Lee, B. G. Chae, H. T. Kim, S. L. Maeng, and K. Y. Kang, “Growth optimization and electrical characteristics of VO2 films on amorphous SiO2/Si substrates,” J. Appl. Phys., 95, 1407 (2004).
    [28]R.T. R. kumara, B. Karunagarana, D. Mangalaraja, S. K. Narayandassa, P. Manoravi, and M. Josephb, “Properties of pulsed laser deposited vanadium oxide thin film thermistor,” Mater. Sci. Semicond. Process, 6, 375 (2003).
    [29]R.T. R. Kumara, B. Karunagaran, D. Mangalaraj, S. K. Narayandass, P. Manoravi, M. Joseph, V. Gopal, “Pulsed laser deposited vanadium oxide thin films for uncooled infrared detectors,” Sens. Actuator A-Phy., 107, 62 (2003).
    [30]Z. F. Luo, Z. M. Wu, X. D. Xu, T. Wang, and Y. D. Jiang, “Electrical and optical properties of nanostructured VOx thin films prepared by direct current magnetron reactive sputtering and post-annealing in oxygen,” Thin Solid Films, 519, 6203 (2011).
    [31]S. H. Chen, J. J. Lai, J. Dai, H. Ma, H. C. Wang, and X. J. Yi, “Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method,” Opt. Express, 17, 24153 (2009).
    [32]Venkatasubramaniana, O. M. Cabarcos, D. L. Allara, M. W. Horn, and S. Ashok, “Correlation of temperature response and structure of annealed VOx thin films for IR detector applications,” J. Vac. Sci. Technol. A, 27, 956 (2009).
    [33]H. Shanak, H. Schmitt, J. Nowoczin, and K. H. Ehses, “Effect of O2 partial pressure and thickness on the gasochromic properties of sputtered V2O5 films,” J. Mater. Sci., 40, 3467 (2005).
    [34]S. H. Chen, H. Ma, S. B. Wang, J. Xiao, H. Zhou, X. M. Zhao, Y. Li, and X. J. Yi, “Vanadium oxide thin films deposited on silicon dioxide buffer layers by magnetron sputtering,” Thin Solid Films 497, 267 (2006).
    [35]R.O. Dillon, K. Le, and N. Ianno, “Thermochromic VO2 sputtered by control of a vanadium-oxygen emission ratio”, Thin Solid Films, 398, 10 (2001).
    [36]J. Dai, X. Z. Wang, S. W. He, Y. Huang, and X. J. Yi, “Low temperature fabrication of VOx thin films for uncooled IR detectors by direct current reactive magnetron sputtering method,” Infrared Phys. Technol., 51, 287 (2008).
    [37]N. Fieldhouse, S. M. Pursel, M. W. Horn, and S. S. N. Bharadwaja, “Electrical properties of vanadium oxide thin films for bolometer applications: processed by pulse dc sputtering,” J. Appl. Phys., 42, 055408 (2009).
    [38]H. Jerominek, F. Picard, and D. Vincent, “Vanadium oxide films for optical switching and detection,” Opt. Eng., 32, 2092 (1993).
    [39]Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer, and M. A. El Khakani, “Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films,” J. Appl. Phys., 87, 051910 (2005).
    [40]S. J. Yun, J. W. Lim, B. G. Chae, B. J. Kim, and H. T. Kim, “Characteristics of vanadium dioxide films deposited by RF-magnetron sputter deposition technique using V-metal target,” Physica B, 403, 1381 (2008).
    [41]H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphous silicon suboxide layer,” Sol. Energy Mater. Sol. Cells, 92, 1279 (2008).
    [42]Y. H. Han, I. H. Choi ,C. S. Son, K. T. Kim, N. C. Anh, H. J. Shin, and S. Moon, “Fabrication of a Surface Micromachined Uncooled Microbolometer Based on the V2O5/V/V2O5 Sandwich Structure,” J. Korean Phys. Soc., 45, 1655 (2004).
    [43]K. Tokoro, D. Uchikawa, M. Shikida, and K. Sato, “Anisotropic Etching Properties of Silicon in KOH and TMAH Solutions,” IEEE Int. Symp. MHS., 65 (1998).
    [44]C. W. Zou, X. D. Yan, D. A. Patterson, E. A. C. Emanuelsson, J. M. Bianb and W. Gaop, “Temperature sensitive crystallization of V2O5: from amorphous film to β-V2O5 nanorods,” CrystEngComm.,12, 691 (2010).
    [45]W. Radford, D. Murphy, M. Ray, S. Propst, A. Kennedy, J. Kojiro, J. Woolaway, and K.Soch, “320 x 240 silicon microbolometer uncooled IRFPAs with on-chip offset correction,” Proc. SPIE.,82, 2746 (1996).

    無法下載圖示 校內:2023-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE